Case Study

Tool Systems to Support Progress Toward Expert-like Teaching by Early Career Science Educators

The goal of this project is to accelerate the progress of early-career and pre-service science teachers from novice to expert-like pedagogical reasoning and practice by developing and studying a system of discourse tools. The tools are aimed at developing teachers' capabilities in shaping instruction around the most fundamental science ideas; scaffolding student thinking; and adapting instruction to diverse student populations by collecting and analyzing student data on their thinking levels.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0822016
Funding Period: 
Mon, 09/15/2008 to Fri, 08/31/2012
Project Evaluator: 
Jim Minstrell

Building BLOCKS for Science: What Young Children Should Know and Be Able to Do When They Enter Kindergarten

Building Base Line Objectives for Children’s Knowledge Skills for Science (BLOCKS)is a 4-year project that integrates research and applied teaching to take a close look inside prekindergarten classrooms. The overall research project includes extensive classroom observation by teachers and researchers of children’s ability to learn science processes and content; intensive professional development and mentoring support for teachers to learn science; and multiple qualitative, as well as, quantitative assessment strategies.
Lead Organization(s): 
Award Number: 
0821988
Funding Period: 
Mon, 09/01/2008 to Fri, 08/31/2012
Full Description: 

The Texas Regional Collaboratives, headquartered in the Center for Science and Mathematics Education at the University of Texas in Austin seeks to integrate research and applied education to take important tools inside pre-kindergarten classrooms to assess young students' knowledge and skills and test strategies for teaching core science concepts to young learners. The project will involve teachers from multiple backgrounds and will be conducted in a variety of settings with an emphasis on including classrooms where students are culturally and economically diverse. The mixed methods research will include data collection via case studies and technology-based assessment techniques.

Utilizing a robust research community of science and early childhood educators, science content specialists, researchers, and classroom teachers, the project will conduct four years of intense classroom observation and data collection in 25 pre-kindergarten classrooms with the intent of probing for answers to the following questions: (a) What should children know and be able to do when they enter kindergarten? (b)What core STEM ideas should be stressed in pre-kindergarten/kindergarten science learning activities? (c)What professional development practices best support the teaching of complex STEM concepts and processes to young learners?

Science Literacy through Science Journalism (SciJourn)

This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.

 

Project Email: 
Lead Organization(s): 
Award Number: 
0822354
Funding Period: 
Mon, 09/01/2008 to Fri, 08/31/2012
Project Evaluator: 
Brian Hand, University of Iowa
Full Description: 

For a more in-depth look at Scijourn, visit the project spotlight.

CAREER: Work Contexts, Teacher Learning Opportunities, and Mathematics Achievement of Middle School Students

This CAREER proposal has four objectives: 1) examine the nature of mathematics teachers' learning opportunities for instructional improvement, 2) examine how work contexts influence the quality of teacher learning opportunities, 3) examine the impact of teacher learning opportunities on changes in student mathematics achievement over four years, and 4) work with district and school administrators to promote instructional improvement and student achievement by effectively providing learning opportunities to mathematics teachers.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1305150
Funding Period: 
Sat, 12/15/2012 to Mon, 06/30/2014
Full Description: 

This CAREER proposal has four objectives: 1) examine the nature of mathematics teachers' learning opportunities for instructional improvement, 2) examine how work contexts influence the quality of teacher learning opportunities, 3) examine the impact of teacher learning opportunities on changes in student mathematics achievement over four years, and 4) work with district and school administrators to promote instructional improvement and student achievement by effectively providing learning opportunities to mathematics teachers. The PI will conduct a statewide survey of 1,047 mathematics teachers in 201 middle schools and their 35,304 students in grades 6-8 throughout the state of Missouri.

This project was originally funded under award # 0746936.

Developing an Integrated Assessment and Support System for Elementary Teacher Education

The project team is developing, implementing and evaluating a prototype for an integrated assessment system in elementary teacher education in mathematics. The project is documenting both the development of the student teachers in the practice of teaching mathematics to students from diverse backgrounds and of cooperating teachers and field instructors as they learn to analyze the practice of the student teachers and provide feedback.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0554416
Funding Period: 
Sat, 07/15/2006 to Wed, 06/30/2010

Data Games—Tools and Materials for Learning Data Modeling (Collaborative Research: Konold)

This project is developing software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, conjecture improved strategies, and test their strategies in another round of the game.

Award Number: 
0918653
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Jim Hammerman
Full Description: 

Students playing computer games generate large quantities of rich, interesting, highly variable data that mostly evaporates into the ether when the game ends. What if in a classroom setting, data from games students played remained accessible to them for analysis? In software and curriculum materials being developed by the Data Games project at UMass Amherst and KCP Technologies, data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, conjecture improved strategies, and test their strategies in another round of the game.

 

The video games are embedded in TinkerPlots and Fathom, two data analysis learning environments widely used in grades 5–8 and 8–14 respectively. The game data appear in graphs in real time, allowing several cycles of strategy improvement in a short time. The games are designed so that these cycles im- prove understanding of specific data modeling and/or mathematics concepts. Lessons will be embedded in LessonLink from Key Curriculum Press to facilitate their integration into standard curricula. The three- year project expands research in students’ understanding of data modeling and their ability to learn mathematical content embedded in data-rich contexts.

Teacher Learning of Technology-Enhanced Formative Assessment

This research study investigates the impact of the wireless environment on high school science resulting in a professional development model that will inform professional developers, administrators, policy-makers and teachers. The project uses in-depth case studies to examine context factors (e.g. technology implementation plans, school culture, extent and type of teacher professional development and teacher background) and critical interactions that may influence science instructional practice in wireless high school science classrooms.

Project Email: 
Award Number: 
1005652
Funding Period: 
Wed, 06/01/2005 to Sun, 02/28/2010

The Development of Student Cohorts for the Enhancement of Mathematical Literacy in Under Served Populations

This project is developing and conducting research on the Cohort Model for addressing the mathematics education of students that perform in the bottom quartile on state and district tests. The predicted outcome is that most students will remain in the cohort for all four years and that almost all of those who do will perform well enough on college entrance exams to be admitted and will test out of remedial mathematics courses.

Lead Organization(s): 
Award Number: 
0822175
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Inverness Research, Inc.
Full Description: 

Project Summary

This is a Full Research and Development proposal which addresses the Contextual Challenge: How can the learning of significant STEM content be achieved to ensure public literacy and workforce readiness?  Our nation is failing to prepare millions of youth for meaningful and productive participation in an information-based society. The target population are those students performing in the bottom quartile on state and national tests, many of these are children of color living in under resourced communities, and most of these young people do not finish high school and end up diverted into an underground economy, gangs, and prisons.   

This project addresses this failure by further developing and testing an approach that the Algebra Project is developing for high school mathematics, in which students form a cohort that stays together for all four years of high school, study mathematics every day using project-designed curricular materials with teachers who participate in project professional development, and are supported by local community groups. 

The Algebra Project seeks to stimulate a demand for math literacy in those most affected by its absence -- the young people themselves.  It stresses the importance of peer culture, using lessons learned from experiences in the 1960s Civil Rights Movement, as well as in the emergence of project graduates into a group with their own perspectives and initiatives. 

In the 60s, project founders learned how to use the meeting place as a tool to engage and empower the people that the meeting was intended to serve.  In the proposed project, there are two meeting places: the students’ high school mathematics classroom and supplementary education activities; and the network of sites around the country that are communicating and learning how to develop and implement cohorts. Young peoples’ roles in each of these settings are key to creating the motivation and commitment needed for student success as well as developing local interest.  The combination of classroom and professional development work, innovative curriculum materials, and community involvement creates an intervention that can significantly transform the peer culture, even in the face of negative forces.

The Algebra Project has developed a cohort model that we predict will stimulate and enable students to pass the state and district mandated tests in mathematics, to pass the mathematics portions of any graduation test, and to score well enough on the SAT or ACT to enter college, and to place into mathematics courses for college credit (not remedial courses).  Building on previous awards, the project will continue to research and develop the cohort model, and will create a small network of cohorts to establish that our model can be widely successful.

Intellectual merit:  This project will demonstrate how students entering high school performing in the bottom quartile nationally and state-wide can be prepared for college-level mathematics, using lessons learned from many years of past experience working in such communities and in their middle schools, and more recently in their high schools and in collaboration with university mathematicians.  The research results are critical to the nation’s learning how to improve mathematics achievement for all children – to gaining a sense of what such a program “looks and feels like”, and what resources and commitments are required, from which institutions. 

Broader impact:  The results of this discovery research project will advance understanding of how to improve mathematics learning and achievement in low performing districts, so students are prepared to take college mathematics without repeating high school mathematics in early college.  It will also demonstrate the resources and commitments needed to reach this result.

Ecology Disrupted: Using Museum-based Science and Educational Technology to Link Real World Environmental Issues to Basic Ecological Principles

This project uses media such as Science Bulletin Snapshots to engage students with current research and to foster scientific understanding and civic engagement. Through environmental case studies, students learn to develop hypotheses, analyze scientific data, and make conclusions. To address the objectives, the project will create inquiry-based case studies to situate several central ecological principles, as determined by national and state standards, into the context of environmental issues.

Award Number: 
0733269
Funding Period: 
Sat, 09/01/2007 to Mon, 08/31/2009
Full Description: 

Our project asks whether media-rich curriculum materials that immerse middle school students in real, current scientific research can improve students' understanding of science content, and their understanding and appreciation of science as a way to learn about the natural world.  We are using Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH) in New York City to develop middle and high school case study units on contemporary issues in ecology for students underserved in their connection to nature. We developed two problem-based modules that use current scientific data to link ecological principles to real-world environmental issues. Each unit is constructed around a question linking the ecological topic with human daily life. One unit asks the question, 'How do snowy and icy roads put the Baltimore area's water supply at risk?' The other asks the question, 'How does being able to drive between Los Angeles and Las Vegas in under five hours put the bighorn sheep at risk?' The students must use source material to develop hypotheses to address these questions. They then analyze real data to test their hypotheses. Finally, they watch and analyze Museum media to connect the questions that they investigated to broader ecological principles and issues. Additionally, students are asked at the beginning and the end of these units to self-assess their understanding of the science content, the nature of scientific inquiry, and their place in the natural world.

Learning Science as Inquiry with the Urban Advantage: Formal-Informal Collaborations to Increase Science Literacy and Student Learning

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

Award Number: 
0918560
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Learning Innovations at WestEd
Full Description: 

The American Museum of Natural History and Michigan State University propose a research and development project focused on DR-K12 challenge #2 and the hypothesis that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. The overarching questions that drive this project are: How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science? How are these resources then used, and to what extent and in what ways do they contribute to participants’ learning? How are those resources then used for student learning? Answering these questions will involve the use of existing and new resources, enhancement of existing relationships, and a commitment to systematically collect evidence. Urban Advantage (UA) is a middle school science initiative involving informal science education institutions that provides professional development for teachers and hands-on learning for students to learn how to conduct scientific investigations. This project will (1) refine the UA model by including opportunities to engage in field studies and the use of authentic data sets to investigate the zebra mussel invasion of the Hudson River ecosystem; (2) extend the resources available to help parents, administrators, and teachers understand the nature of scientific work; and (3) integrate a research agenda into UA. Teaching cases will serve as resources to help teachers, students, administrators, and families understand scientific inquiry through research on freshwater ecosystems, and—with that increased understanding—support student learning. Surveys, observations, and assessments will be used to document and understand the effects of professional development on teachers, students, administrators, and parents. The study will analyze longitudinal, multivariate data in order to identify associations between professional development opportunities for teachers, administrators, and parents, their use of resources to support their own learning and that of students, middle school teachers’ instructional practices, and measures of student learning.

Pages

Subscribe to Case Study