Case Study

Enhancing Games with Assessment and Metacognitive Emphases (EGAME)

This development and research project designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

Lead Organization(s): 
Award Number: 
1119290
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This development and research project from Vanderbilt University, Facet Innovations, and Filament Games, designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings and refines computer assisted testing and Hidden Markov Modeling to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

The project uses a randomized experimental 2 x 1 design comparing a single control condition to a single experimental condition with multiple iterations to test the impact of the game on the learning of Newtonian physics. Using designed based research with teachers and students, the researchers are iteratively developing and testing the interactions and knowledge acquisition of students through interviews, pre and post tests and stealth assessment. Student learner action logs are recorded during game-play along with randomized student interviews. Students' explanations and game-play data are collected and analyzed for changes in domain understanding using pre-post tests assessment.

The project will afford the validation of EGAME as an enabler of new knowledge in the fields of cognition, conceptual change, computer adaptive testing and Hidden Markov Modeling as 90 to 300 middle school students learn Newtonian mechanics, and other science content in game-based learning and design. The design of this digital game platform encompasses a very flexible environment that will be accessible to a diverse group of audiences, and have a transformational affect that will advance theory, design and practice in game-based learning environments.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

Supporting Scientific Practices in Elementary and Middle School Classrooms

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1020316
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2012
Full Description: 

Research on student learning has developed separate progressions for scientific argumentation, explanation and scientific modeling. Engaging Learners in Scientific Practices develops a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through improvements in students' performance and understanding of scientific practice as measured by their attention to generality of explanation, attention to clarity of communication and audience understanding, attention to evidentiary support, and attention to mechanistic versus descriptive accounts. The project is led by researchers at Northwestern University, the University of Texas, Wright State University, Michigan State University, and the BEAR assessment group. Two cohorts of 180 students each are followed for two years from 4th to 5th grade in Illinois and two cohorts of 180 students each are followed for two years from 5th to 6th grade in Michigan The elementary school students will work with FOSS curriculum units modified to embed supports for scientific practices. Two cohorts of 500 middle school students are followed for three years from 6th to 8th grade as they work with coordinated IQWST units over three years. The outcome measures include analyses of classroom discourse, pre- and pos-test assessments of student learning, and reflective interviews grounded in students' own experiences with practices in the classroom to assess their growth across the dimensions. The BEAR team is responsible for validation and calibration of the frameworks and instruments, and design of the scheme for analysis of the data. Horizon Research performs the formative and summative evaluation. The project will produce an empirically-tested learning progression for scientific practices for grades 4-8 along with tested curriculum materials and validated assessment items that support and measure students' ability in the scientific practices of explanation, argumentation and modeling. In the process of development, an understanding is gained about how to design and test this learning progression. The framework is articulated on a website for use by other researchers and developers. The project also builds capacity by educating several graduate students.


Project Videos

2019 STEM for All Video Showcase

Title: Science Storylines

Presenter(s): Brian Reiser, Kelsey Edwards, Barbara Hug, Tara McGill, Jamie Noll, Michael Novak, Bill Penuel, Trey Smith, & Aliza Zivic


Teachers Empowered to Advance Change in Mathematics (TEACH MATH): Preparing Pre K-8 Teachers to Connect Children's Mathematical Thinking and Community-Based Funds of Knowledge

This project will modify the teacher preparation program for preK-8 teachers. The program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge, and learn to encourage students' mathematical thinking. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

Lead Organization(s): 
Award Number: 
1228034
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
Research Institute for Studies in Education
Full Description: 

This research and development project will modify the teacher preparation program for preK-8 teachers at six universities located in different regions of the U.S. The new program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge in ways that will help them teach mathematics, and learn to encourage students' mathematical thinking. By integrating these important bodies of knowledge, pre-service teachers should be better prepared to teach mathematics to the variety of students in their classes. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

The project includes a study of how pre-service teachers learn to apply the knowledge they have gained in the program. The research team has planned a longitudinal collection of data that will track the pre-service teachers into their careers. Their goal is to document teachers' understandings of children's mathematical thinking and children's cultural funds of knowledge and to understand the relationship between teachers' understandings and the learning and disposition of preK-8 students. The study will be implemented at all six universities with staggered start dates allowing for analysis and revisions between cohorts.

These research and development efforts have the potential to impact preK-8 teacher preparation through (1) the development of modules that integrate several relevant proficiencies in mathematics teaching, and (2) the research that studies the impact of such a program on the mathematical learning and disposition of preK-8 students.

Professional Development for Culturally Relevant Teaching and Learning in Pre-K Mathematics

This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.

Award Number: 
1019431
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2018
Project Evaluator: 
Victoria Jacobs
Full Description: 

Developers and researchers at the University of Wisconsin are creating and studying a professional development model that connects research in counting and early number (CGI), early childhood, and funds of knowledge. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses a specific, circumscribed content domain - counting and basic number operations - with the intention of exploring the domain in depth particularly as it connects to children's experiences in their homes and communities and how it is learned and taught through play.

The project designs, develops, and tests innovative resources and models for teachers to support ongoing professional learning communities. These learning communities are designed to identify and build on the rich mathematical understandings of all pre-K children. The project's specific goals are to instantiate a reciprocal "funds of knowledge" framework for (a) accessing children's out-of-school experiences in order to provide instruction that is equitable and culturally relevant and (b) developing culturally effective ways to support families in understanding how to mathematize their children's out-of-school activities. Teachers are observed weekly during the development and evaluation process and student assessments are used to measure students' progress toward meeting project benchmarks and the program's effectiveness in reducing or eliminating the achievement gap.

The outcome is a complete professional development model that includes written and digital materials. The product includes case studies, classroom video, examples of student work, and strategies for responding to students' understandings.

Measurement Approach to Rational Number (MARN)

This project is designing, developing, and testing an innovative approach to elementary students' learning in the critical areas of multiplicative reasoning, fractions, and proportional reasoning. The project is building on the successful El'Konin-Davydov (E-D) elementary mathematics curriculum that originated in Russia to develop a curriculum framework that can be implemented in U. S. schools. The ultimate product of the research will be a rational number learning progression consisting of carefully articulated and sequenced learning goals.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1020154
Funding Period: 
Thu, 07/15/2010 to Tue, 06/30/2015
Full Description: 

The Measurement Approach to Rational Number (MARN) project is a collaborative effort by faculty at New York University, Iowa State University, and the Illinois Institute of Technology that is designing, developing, and testing an innovative approach to elementary students' learning in the critical areas of multiplicative reasoning, fractions, and proportional reasoning. The project team is building on the successful El'Konin-Davydov (E-D) elementary mathematics curriculum that originated in Russia to develop a curriculum framework that can be implemented in U. S. schools.

The MARN project addresses five core research questions about how rational number learning can be developed from a measurement perspective and how sociocultural theory and constructivism can contribute to design of effective learning trajectories based on that perspective. The project begins with careful analysis of the E-D curriculum embodied in Russian mathematics materials, of classroom data from a Hawaii implementation of the E-D curriculum, and of relevant prior curriculum development projects in other U. S. contexts. Work is proceeding from development of an initial curriculum framework through intensive teaching experiments to implementation and modification of the framework in the course of classroom design experiments.

The ultimate product of the research and development effort will be a rational number learning progression consisting of carefully articulated and sequenced learning goals. The curriculum framework will also include mathematical tasks to foster learning of each concept, description of predicted student learning in the context of the tasks, a set of assessment items related to each concept, and guidelines for relevant teacher interventions. Thus, the framework will provide a foundation for development of curriculum units.

Integrating Engineering and Literacy

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

Lead Organization(s): 
Award Number: 
1020243
Funding Period: 
Wed, 09/01/2010 to Wed, 05/31/2017
Full Description: 

The Integrating Engineering and Literacy (IEL) project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The project research and development team at Tufts University is working with pre-service teachers to design and test the curriculum modules for students and the teacher professional development model. Then the program is tested and refined in work with 100 in-service teachers and their students in a diverse set of Massachusetts schools. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students. The driving questions behind this proposed research are: (1) How do teachers' engineering (and STEM) content knowledge, pedagogical content knowledge, and perceptions or attitudes toward engineering influence their classroom teaching of engineering through literacy? (2) Do teachers create their own personal conceptions of the engineering design process, and what do these conceptions look like? (3) What engineering/reading thinking skills are students developing by participating in engineering activities integrated into their reading and writing work? The curriculum materials and teacher professional development model are being produced by a design research strategy that uses cycles of develop/test/refine work. The effects of the program are being evaluated by a variety of measures of student and teacher learning and practice. The project will contribute materials and research findings to the ultimate goal of understanding how to provide elementary school students with meaningful opportunities to learn engineering and develop valuable problem solving and thinking skills.

INK-12: Teaching and Learning Using Interactive Ink Inscriptions in K-12 (Collaborative Research: Koile)

This is a continuing research project that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The primary products are substantiated research findings on the use of tablet computers and inscriptions in 4th and 5th grade math and science, as well as models for teacher education and use.
Award Number: 
1020152
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider, Education Design Inc.
Full Description: 

The research project continues a collaboration between MIT's Center for Educational Computing Initiatives and TERC focusing on the enhancement of K-12 STEM math and science education by means of technology that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The project builds on the PIs' prior work, which demonstrated that both teachers and students benefit from such technology because they can easily draw and write on a tablet screens, thus using representations not possible with only a typical keyboard and mouse; and they can easily send such ink inscriptions to one another via wireless connectivity. This communication provides teachers the opportunity to view all the students' work and make decisions about which to share anonymously on a public classroom screen or on every student's screen in order to support discussion in a "conversation-based" classroom. Artificial intelligence methods are used to analyze ink inscriptions in order to facilitate selection and discussion of student work.

The project is a series of design experiments beginning with the software that emerged from earlier exploratory work. The PIs conduct two cycles of experiments to examine how tablets affect students learning in 4th and 5th grade mathematics and science. The project research questions and methods focus on systematic monitoring of teachers' and students' responses to the innovation in order to inform the development process. The PIs collect data on teachers' and students' use of the technology and on student learning outcomes and use those data as empirical evidence about the promise of the technology for improving STEM education in K-12 schools. An external evaluator uses parallel data collection, conducting many of the same research activities as the core team and independently providing analysis to be correlated with other data. His involvement is continuous and provides formative evaluation reports to the project through conferences, site visits, and conference calls.

The primary products are substantiated research findings on the use of tablet computers, inscriptions, and networks in 4th and 5 grade classrooms. In addition the PIs develop models for teacher education and use, and demonstrate the utility of artificial intelligence techniques in facilitating use of the technology. With the addition of Malden Public Schools to the list of participating districts, which includes Cambridge Public Schools and Waltham Public Schools from earlier work, the project expands the field test sites to up 20 schools' classrooms.

CAREER: Teaching and Learning Social Science Inquiry and Spatial Reasoning with GIS

This research project aims to explore and understand how geographic information systems (GIS) can be used to promote and teach spatial thinking and social science inquiry skills. It addresses the research question: What are effective teaching practices using GIS to teach spatial thinking and social science inquiry in middle-school and undergraduate classrooms? This program will study the effectiveness of teaching practices for social science instruction with GIS in urban public schools for specific learning objectives.

Partner Organization(s): 
Award Number: 
0953448
Funding Period: 
Thu, 04/01/2010 to Thu, 03/31/2011
Full Description: 

This research project aims to explore and understand how geographic information systems (GIS) can be used to promote and teach spatial thinking and social science inquiry skills. It addresses the research question: What are effective teaching practices using GIS to teach spatial thinking and social science inquiry in middle-school and undergraduate classrooms? This program will study the effectiveness of teaching practices for social science instruction with GIS in urban public schools for specific learning objectives.

The research plans to develop an empirically-grounded framework for studying the ways teaching practices with GIS interact with four other foci of research: (1) learning objectives for inquiry skills and spatial reasoning, articulated across grade levels; (2) learning processes with GIS; (3) GIS curriculum designs; and (4) the design of GIS tools for learning environments. The project plans to use the GIS tools within a culturally relevant curriculum unit for diverse students of African American and Latino backgrounds.

A range of research methods will be used to study teaching and learning, focused on a common topic: American Migrations of African American and Latino populations over time, using GIS-mapped census data. Research will be conducted in three phases: (1) design experiments iteratively developing a theoretical framework, curriculum, and instructional strategies; (2) case studies of effective instruction at two levels; and (3) curriculum evaluations. Findings on effective teaching and learning in middle school classrooms, with undergraduate college students, and pre-service elementary teachers via GIS based-curriculum, will be presented.

CAREER: Teaching Practices That Support Fraction-Based Algorithmic Thinking

The research and educational activities of this project focus on advancing the field in the area of fraction operation algorithm development. The goal of this research is to identify core mathematical teaching practices that engage and support students in algorithmic thinking associated with fraction operations. The educational product of this work will be written educational materials that can be used to support the general population of teachers in this domain.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0952661
Funding Period: 
Sun, 08/15/2010 to Fri, 07/31/2015
Full Description: 

The research and educational activities of this project focus on advancing the field in the area of fraction operation algorithm development. The goal of the research is to identify core mathematical teaching practices that engage and support students in algorithmic thinking associated with fraction operations. The project has four objectives: (1) understand and document local instructional theories and routines of practice exemplary teachers use as they engage students in algorithmic thinking for fraction operations; (2) develop a prototypical model of core routines of practice generated from exemplary teachers that support students as they engage in algorithmic thinking for fraction operations; (3) design, pilot and study the usability of the prototypical model as a professional development tool with typical teachers as they engage students in algorithmic thinking for fraction operations; and (4) identify specific core routines of practice that are shown to be productive for use with typical teachers and explore ways of disseminating them at a larger scale.

Phase One involves collaborative work with and intensive observational study of the practice of four exemplary teachers while they teach a common unit on fraction operations. Individual teacher case and cross-case examination will focus on mathematical development, use of representational modes, aspects of purposefulness in the teachers' practice, and discursive considerations and positioning of the learner. The identified local instructional theories and routines of practice that emerge will lead to the development of a prototypical model of teaching practice that engages students in algorithmic thinking for fraction operations. The prototypical model will frame the development of activities and tools to be piloted and studied with 15 typical middle grade teachers from urban and suburban districts in Phase Two. A study group focused professional development setting will be used to implement, study, and refine frameworks, activities and tools.

The product of this work will be written educational materials that can be used by other teacher educators to support the general population of teachers in this domain. These materials will identify core routines of practice associated with algorithmic thinking for fraction operations and offer activities and tools to support their development in practice. The domain of rational number has been identified as the most challenging and the most essential topic in elementary and middle school mathematics needed to succeed in higher mathematics and science. Moving forward in this area is critical in the successful preparation of students for STEM careers.

Pages

Subscribe to Case Study