Case Study

Learning about Viral Epidemics through Engagement with Different Types of Models

The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models.

Award Number: 
2101083
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

The project will develop new curriculum and use it to research how high school students learn about viral epidemics while developing competencies for scientific modeling. The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes. COVID-19 caused devasting impacts, and marginalized groups including the Latinx community suffered disproportionately negative outcomes. The project will directly recruit Latinx students to ensure that design products are culturally responsive and account for Latinx learner needs. The project will create new pathways for engaging Latinx students in innovative, model-based curriculum about critically important issues. Project research and resources will be widely shared via publications, conference presentations, and professional development opportunities for teachers.

The project will research three aspects of student learning: a) conceptual understandings about viral epidemics, b) epistemic understandings associated with modeling, and c) model-informed reasoning about viral epidemics and potential solutions. The research will be conducted in three phases. Phase 1 will explore how students make sense of viral epidemics through different types of models. This research will be conducted with small groups of students as they work through learning activities and discourse opportunities associated with viral epidemic models. Phase 2 will research how opportunities to engage in modeling across different types of models should be supported and sequenced for learning about viral epidemics. These findings will make it possible to revise the learning performance which will be used to develop a curricular module for high school biology classes. Phase 3 will study the extent to which students learn about viral epidemics through engagement in modeling practices across different models. For this final phase, teachers will participate in professional development about viral epidemics and modeling and then implement the viral epidemic module in their biology classes. A pre- and post-test research design will be used to explore student conceptual understandings, model-informed reasoning, and epistemic understandings.

Supporting Teacher Customizations of Curriculum Materials for Equitable Student Sensemaking in Secondary Science (Collaborative Researcher: Reiser)

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2101377
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

This project is developing and researching tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. Sensemaking involves students building and using science ideas to address questions and problems they identify, rather than solely learning about the science others have done. Despite it being a central goal of recent national policy documents, such meaningful engagement with science knowledge building remains elusive in many classrooms. Students from non-dominant communities frequently do not see themselves as “science people” because their ways of knowing and experiences are often not valued in science classrooms. Professional learning grounded in teachers’ use of innovative high quality curriculum materials can help teachers learn to teach in new ways. Yet teachers need guidance to customize curriculum materials to fit their own local contexts and leverage students’ ideas and experiences while maintaining the goals of recent policy documents. This project is researching and developing customization tools to support teachers in their principled use and adaptation of materials for their classrooms. These customization tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking. During the project, 74 teachers from diverse schools will participate in professional learning using these customization tools. After testing, the customization tools and illustrative cases will be disseminated broadly to support teachers enacting any science curriculum in leveraging the ideas and experiences that students bring into the classroom. In addition, the research results in the form of design principles will inform future design of curriculum materials and professional learning resources for science.

A key element in science education reform efforts includes shifting the epistemic and power structures in the classroom so that teachers and students work together to build knowledge. Research shows that shifts in science teaching are challenging for teachers. Researchers and practitioners have collaborated to develop curriculum materials that begin to support teachers in this work. But teachers need to interpret these materials and customize the tasks and strategies for their own context as they work with their own students. Curriculum enactment is not prescriptive, but rather a “participatory relationship” between the teacher, curriculum materials, students and context, where teachers interpret the materials and the goals of the reform, and customize them to adapt the tasks and activity structures to meet the needs and leverage the resources of their students. The field needs to better understand how teachers learn from and navigate this participatory relationship and what supports can aid in this work. This project will include design-based research examining teachers’ customization processes and the development of tools to support teachers in adapting curriculum materials for their specific school context to facilitate equitable science sensemaking for all students, where all students engage in ambitious science knowledge building. The major components of the research program will include: (1) Empirical study of teachers’ customization processes; (2) Theoretical model of teacher thinking and learning that underlies customization of curriculum materials; (3) Tools to support principled customization consistent with the goals of the reform; and (4) Empirical study of how tools influence teachers’ customization processes. The project is addressing the urgent need for scalable support for teacher learning for recent shifts in science education in relation to both a vision of figuring out and equity.

Supporting Teacher Customizations of Curriculum Materials for Equitable Student Sensemaking in Secondary Science (Collaborative Researcher: McNeill)

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2101384
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

This project is developing and researching tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. Sensemaking involves students building and using science ideas to address questions and problems they identify, rather than solely learning about the science others have done. Despite it being a central goal of recent national policy documents, such meaningful engagement with science knowledge building remains elusive in many classrooms. Students from non-dominant communities frequently do not see themselves as “science people” because their ways of knowing and experiences are often not valued in science classrooms. Professional learning grounded in teachers’ use of innovative high quality curriculum materials can help teachers learn to teach in new ways. Yet teachers need guidance to customize curriculum materials to fit their own local contexts and leverage students’ ideas and experiences while maintaining the goals of recent policy documents. This project is researching and developing customization tools to support teachers in their principled use and adaptation of materials for their classrooms. These customization tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking. During the project, 74 teachers from diverse schools will participate in professional learning using these customization tools. After testing, the customization tools and illustrative cases will be disseminated broadly to support teachers enacting any science curriculum in leveraging the ideas and experiences that students bring into the classroom. In addition, the research results in the form of design principles will inform future design of curriculum materials and professional learning resources for science.

A key element in science education reform efforts includes shifting the epistemic and power structures in the classroom so that teachers and students work together to build knowledge. Research shows that shifts in science teaching are challenging for teachers. Researchers and practitioners have collaborated to develop curriculum materials that begin to support teachers in this work. But teachers need to interpret these materials and customize the tasks and strategies for their own context as they work with their own students. Curriculum enactment is not prescriptive, but rather a “participatory relationship” between the teacher, curriculum materials, students and context, where teachers interpret the materials and the goals of the reform, and customize them to adapt the tasks and activity structures to meet the needs and leverage the resources of their students. The field needs to better understand how teachers learn from and navigate this participatory relationship and what supports can aid in this work. This project will include design-based research examining teachers’ customization processes and the development of tools to support teachers in adapting curriculum materials for their specific school context to facilitate equitable science sensemaking for all students, where all students engage in ambitious science knowledge building. The major components of the research program will include: (1) Empirical study of teachers’ customization processes; (2) Theoretical model of teacher thinking and learning that underlies customization of curriculum materials; (3) Tools to support principled customization consistent with the goals of the reform; and (4) Empirical study of how tools influence teachers’ customization processes. The project is addressing the urgent need for scalable support for teacher learning for recent shifts in science education in relation to both a vision of figuring out and equity.

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Felton)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101456
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Thanheiser)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101463
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

CAREER: Partnering with Teachers and Students to Engage in Mathematical Inquiry about Relevant Social Issues

This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans.

Lead Organization(s): 
Award Number: 
2042975
Funding Period: 
Sat, 05/01/2021 to Thu, 04/30/2026
Full Description: 

Despite efforts to address racial, gender, income-level and other kinds of inequities, disparities persist throughout society in educational, occupational, financial, and healthcare services and opportunities. To work toward societal equity, mathematics teachers have shown increased interest in both improving students’ achievement and supporting students’ ability to use mathematics to analyze these inequities to create change. For instance, a mathematics task may use rate, ratio, and proportion to explore the gender wage gap, and then use functions to explore disparities in earnings over time. Few resources, such as textbooks, coaching protocols, or video examples of classroom teaching, however, exist to support mathematics teachers’ efforts to teach the mathematics content while investigating relevant social issues. In addition, research indicates several dilemmas teachers face in maintaining the cognitive demand of the task, addressing state standards, and improving student agency through such investigations. Research is needed to understand how teachers learn to adapt and implement mathematics tasks that facilitate students’ mathematics learning and investigation of social issues. This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans. This project investigates: 1) how mathematics teachers learn to teach the mathematics content through investigation of relevant social issues, 2) how teachers negotiate classroom dilemmas related to this approach, and 3) how students feel about mathematics and their ability to enact change toward an equitable society. The professional development will be co-designed with mathematics teacher leaders from the school and the research team and will last three years. Teachers will invite students to become advisory board members to center students’ voices and solicit feedback about the relevance of the social issues embedded in the tasks. Classroom videos will be captured to share on a project website for use by mathematics teacher educators and professional development providers. The website will also host mathematics tasks designed through this project for teachers’ use in their own classrooms.

This qualitative, participatory design study partners with the mathematics department to investigate the following research questions: (1) How do teachers learn to adapt mathematics tasks to make them cognitively demanding and socially relevant for their students? How do contextual factors (e.g., specific school context/location/history, student backgrounds, teacher backgrounds, such as race and class) influence teacher learning? (2) What dilemmas become salient and how do teachers negotiate them while implementing the tasks? (3) How do these tasks improve students’ attitudes about mathematics and feelings of empowerment?  In the first year, the research team and two mathematics teacher leaders from the school will co-design the professional development experience focused on designing and implementing mathematics tasks grounded in issues that are socially relevant to students. In years 2-4, the mathematics department will engage in this professional development, with continual input from teacher participants. Participants will create student advisory boards who will offer feedback to teachers about the relevance of the mathematics tasks. Participants will video tape their own classrooms to share brief vignettes (5-8 minutes long) that highlight dilemmas and/or successes for video club sessions as part of the professional development series. Video club sessions offer opportunities to discuss challenges and successes with colleagues and offer peer support. These video clips will also become video case studies, along with the mathematics task and teacher reflections, for use by mathematics teacher educators and professional development providers through a project website. In addition, years 3-4 the project team will develop four detailed classroom case studies, accompanied with coaching support from the research team. To answer research questions 1 and 2 regarding teacher learning and dilemmas, teachers’ perspectives will be captured through professional development artifacts, coaching debriefs, teachers’ written reflections, and one-on-one semi structured interviews. To answer research question 3 regarding student agency and attitudes about mathematics, student sentiments will be explored through student work, open-ended surveys, and focus group interviews with eight focal students per classroom case study. A project website will share mathematics tasks and video cases with the broader community of mathematics educators. Through distribution of such materials, the project aims to offer much-needed resources and supports for mathematics teachers to use cognitively demanding and socially relevant mathematics tasks with their students. The project will also publish peer-reviewed research articles to share findings with the field.

Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education (Collaborative Research: Elliott)

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program.

Lead Organization(s): 
Award Number: 
2101667
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

There is increased recognition that engaging all students in learning mathematics requires an explicit focus on anti-bias mathematics teaching. Teachers, even with positive intentions, have biases, causing them to treat students differently and impacting how they distribute students’ opportunities to learn in K-12 mathematics classrooms. Research is needed to examine models of mathematics teacher professional development that explicitly addresses bias reduction. The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members. The project team will study teacher leader professional development, including the professional development model, framework, and tools, along with what teacher leaders across district contexts and grade-levels take up and use in their instructional practice.  This will potentially have wider implications for supporting more equitable mathematics teaching and leadership. Project activities, resources, and tools will be shared with the broader community of mathematics educators and researchers for use in other contexts.

The goal of this two-phase, design based research project is to iteratively design and research teacher leaders’ (TLs) participation in community-centered, job-embedded professional development and investigate their subsequent impact on classrooms, schools, and districts. The project builds on the existing Math Studio professional development model to create a Community Centered Math Studio, integrating the Anti-bias Mathematics Education Framework into the work. The project seeks to understand how the professional development model supports the development of teacher leaders' knowledge, dispositions, and practices for teaching and leading anti-bias mathematics education, and how teachers' subsequent classroom practice can cultivate students' mathematical engagement, discourse, and interests. The project will measure aspects of teacher knowledge and classroom practice by integrating existing classroom observation rubrics and STEM interest surveys to assess the impact on teacher classroom practice and student outcomes. The project will engage 12 TLs and approximately 60 additional teachers working with those TLs in two years of professional development using the Community Centered Math Studio Model to support anti-bias mathematics teaching. Data will be collected for all teachers related to their participation in the professional learning, with six teachers being followed for additional data collection and in-depth case studies. The project's outcomes will contribute to theories of how TLs build adaptive expertise for teaching and leading to reduce bias in classrooms, departments, schools, and districts. In addition, the project will contribute new and adapted research instruments on anti-bias teaching and leading. The research outcomes will add to the growing research base that describes the nature of equitable mathematics teaching in K-12 classrooms and increases access to meaningful mathematics for students, teachers, and communities.

Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education (Collaborative Research: Thanheiser)

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program.

Lead Organization(s): 
Award Number: 
2101665
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

There is increased recognition that engaging all students in learning mathematics requires an explicit focus on anti-bias mathematics teaching. Teachers, even with positive intentions, have biases, causing them to treat students differently and impacting how they distribute students’ opportunities to learn in K-12 mathematics classrooms. Research is needed to examine models of mathematics teacher professional development that explicitly addresses bias reduction. The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members. The project team will study teacher leader professional development, including the professional development model, framework, and tools, along with what teacher leaders across district contexts and grade-levels take up and use in their instructional practice.  This will potentially have wider implications for supporting more equitable mathematics teaching and leadership. Project activities, resources, and tools will be shared with the broader community of mathematics educators and researchers for use in other contexts.

The goal of this two-phase, design based research project is to iteratively design and research teacher leaders’ (TLs) participation in community-centered, job-embedded professional development and investigate their subsequent impact on classrooms, schools, and districts. The project builds on the existing Math Studio professional development model to create a Community Centered Math Studio, integrating the Anti-bias Mathematics Education Framework into the work. The project seeks to understand how the professional development model supports the development of teacher leaders' knowledge, dispositions, and practices for teaching and leading anti-bias mathematics education, and how teachers' subsequent classroom practice can cultivate students' mathematical engagement, discourse, and interests. The project will measure aspects of teacher knowledge and classroom practice by integrating existing classroom observation rubrics and STEM interest surveys to assess the impact on teacher classroom practice and student outcomes. The project will engage 12 TLs and approximately 60 additional teachers working with those TLs in two years of professional development using the Community Centered Math Studio Model to support anti-bias mathematics teaching. Data will be collected for all teachers related to their participation in the professional learning, with six teachers being followed for additional data collection and in-depth case studies. The project's outcomes will contribute to theories of how TLs build adaptive expertise for teaching and leading to reduce bias in classrooms, departments, schools, and districts. In addition, the project will contribute new and adapted research instruments on anti-bias teaching and leading. The research outcomes will add to the growing research base that describes the nature of equitable mathematics teaching in K-12 classrooms and increases access to meaningful mathematics for students, teachers, and communities.

Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education (Collaborative Research: Yeh)

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program.

Lead Organization(s): 
Award Number: 
2101666
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

There is increased recognition that engaging all students in learning mathematics requires an explicit focus on anti-bias mathematics teaching. Teachers, even with positive intentions, have biases, causing them to treat students differently and impacting how they distribute students’ opportunities to learn in K-12 mathematics classrooms. Research is needed to examine models of mathematics teacher professional development that explicitly addresses bias reduction. The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members. The project team will study teacher leader professional development, including the professional development model, framework, and tools, along with what teacher leaders across district contexts and grade-levels take up and use in their instructional practice.  This will potentially have wider implications for supporting more equitable mathematics teaching and leadership. Project activities, resources, and tools will be shared with the broader community of mathematics educators and researchers for use in other contexts.

The goal of this two-phase, design based research project is to iteratively design and research teacher leaders’ (TLs) participation in community-centered, job-embedded professional development and investigate their subsequent impact on classrooms, schools, and districts. The project builds on the existing Math Studio professional development model to create a Community Centered Math Studio, integrating the Anti-bias Mathematics Education Framework into the work. The project seeks to understand how the professional development model supports the development of teacher leaders' knowledge, dispositions, and practices for teaching and leading anti-bias mathematics education, and how teachers' subsequent classroom practice can cultivate students' mathematical engagement, discourse, and interests. The project will measure aspects of teacher knowledge and classroom practice by integrating existing classroom observation rubrics and STEM interest surveys to assess the impact on teacher classroom practice and student outcomes. The project will engage 12 TLs and approximately 60 additional teachers working with those TLs in two years of professional development using the Community Centered Math Studio Model to support anti-bias mathematics teaching. Data will be collected for all teachers related to their participation in the professional learning, with six teachers being followed for additional data collection and in-depth case studies. The project's outcomes will contribute to theories of how TLs build adaptive expertise for teaching and leading to reduce bias in classrooms, departments, schools, and districts. In addition, the project will contribute new and adapted research instruments on anti-bias teaching and leading. The research outcomes will add to the growing research base that describes the nature of equitable mathematics teaching in K-12 classrooms and increases access to meaningful mathematics for students, teachers, and communities.

Building Networks and Enhancing Diversity in the K-12 STEM Teaching Workforce

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2040784
Funding Period: 
Tue, 12/01/2020 to Tue, 11/30/2021
Full Description: 

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career. Currently there is a large demographic discrepancy between students and teachers in K-12 schools. Studies have highlighted that the diverse teaching workforce benefits not only students of color but all students. Since 2017, the Smithsonian Science Education Center has conducted an annual STEM Diversity Summit, with the goal of building a coalition (built on collective impact) for attracting and retaining a diverse K-12 STEM teaching workforce, in which teams of teachers and administrators representing 83 school districts, schools, and states across the country shared their problems and developed a logic model to attract and retain a diverse K-12 STEM teaching workforce in their region with annual support from a matched mentor. This planning grant supports revisiting those former teams to better understand the dynamics of systems change through close examination of the successes and challenges outlined in their logic models with the perspective of the Cultural-Historical Activity Theory (CHAT). Under the collaborative infrastructure elements of shared vision and partnerships, this planning grant will inform and lay the foundation for a future alliance focused on diversifying the K-12 STEM teaching workforce.

In this planning grant, the Smithsonian in collaboration with Howard University, as well as in partnership with other experts in STEM teacher education, professional development, and diversityincluding from Harvard University, Rutgers University, 100kin10, National Board for Professional Teaching Standards, MA Department of Higher Education, STEM Equity Alliance, National Science Teaching Association, and private industrywill work on four primary activities. First, a survey will be developed and conducted with faculty members of Institutions of Higher Education (IHEs), including approximately 100 Minority Serving Institutions, which serve diverse populations in K-12 teacher preparation programs and STEM education across the country. The goal of the survey is to understand what roles IHEs play in organizational change management and strategic planning to diversify the K-12 STEM teaching workforce. Second, a virtual workshop will be convened to bring former STEM Diversity Summit attendees and their extended networks to reflect on their progress and activities in past years and discuss strategic long-term plans. Third, a survey with the virtual workshop participants will be conducted to better understand their practices, attitudes, and perceptions about their roles to create culturally diverse ecosystems in K-12 STEM education. Finally, all the collected information from the above activities will be used to investigate strategies and evidence-based practices of enhancing diversity in the K-12 STEM teaching workforce, and an iterative source book will be developed based on those findings as an initial resource to ground future work. Over a 12 month period, this planning grant will build a network between the former teams and with the extended partners, including the NSF INCLUDES National Network, and help them to grow as regional hubs within a Future NSF INCLUDES Alliance focused on diversifying the K-12 STEM teacher workforce, with the Smithsonian as the backbone organization.

Pages

Subscribe to Case Study