Professional Development

Videocases for Science Teaching Analysis Plus (ViSTA Plus): Efficacy of a Videocase-Based, Analysis-of-Practice Teacher Preparation Program

The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Lead Organization(s): 
Award Number: 
1220635
Funding Period: 
Wed, 08/01/2012 to Sat, 06/30/2018
Full Description: 

Prior studies have demonstrated the positive impact of content-specific videocases of other teachers' practice on science content knowledge and ability to analyze teaching when the videocases are incorporated in the methods courses for preservice teachers. Similar outcomes occurred for experienced, inservice teachers in a year-long professional development that included analyzing video of their own and others' teaching, and these teachers changed their practice in ways that influenced students' science learning. The new ViSTA Plus study explores implementation of a 2-year program for preservice/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?"

ViSTA Plus presents a distinctive version of practice-based teacher education, one that immerses teachers into practice via scaffolded, collaborative analyses of videocases - starting with analysis of other teachers' videocases and moving to collaborative analysis of teachers' own videocases. The ViSTA Plus conceptual framework supports teachers in using Student Thinking and Science Content Storyline Lenses to analyze science teaching and in using a set of teaching strategies that support use of each of these lenses in their planning and teaching. Through this analysis work, teachers deepen their science content knowledge, develop the ability to analyze teaching and learning, and improve their teaching and their students' learning. The current study incorporates a quasi-experimental design to compare the impact of the ViSTA Plus program to that of traditional teacher preparation programs when implemented at universities that serve diverse populations, especially Native American, Hispanic, and low-SES students. Teacher measures are assessing science content knowledge (pre, mid, and posttests), ability to analyze science teaching and learning (pre, mid, and post video analysis tasks), and teaching practice (videorecorded lessons during student teaching and first year of teaching). Elementary students' science achievement is being assessed using pre-post unit tests during student teaching and the first year of teaching.

The study design addresses a gap in the research on preservice teacher preparation by following the pathway of program influence from teacher learning to teaching practice to student learning, and accomplishes this in the context of ViSTA Plus, an alternative, practice-based approach to teacher preparation that embeds all phases of teacher learning in practice from the beginning. Partner universities in this effort are eager to reimagine the traditional teacher preparation sequence, offering new models for the field. The project is producing science-specific, analysis-of-practice materials (videocases, methods course guides, study group guides) to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Exploring the Efficacy of Engineering is Elementary (E4)

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.

Lead Organization(s): 
Award Number: 
1220305
Funding Period: 
Sat, 09/15/2012 to Fri, 08/31/2018
Full Description: 

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The rigorous level of evidence that is developed in this study has significant utility as a support for the kinds of elementary engineering curricula that are needed as the Next Generation Science Standards come online and emphasize engineering design. The study is a randomized control trial where the assignment of teachers will be to the EiE curricular materials or to a counterfactual condition, the use of more standard design engineering curricular materials. The project studies the impact of the use of the curriculum on student learning and on teachers' use of the curriculum in a fidelity of implementation study to determine the core elements of the curriculum that support successful use. The study examines the implementation of the curricular materials in a number of contexts to more fully understand the conditions under which they work best and to explicate what aspects of such project-based inquiry materials most support student learning.

This study uses a randomized cluster trial to examine the efficacy of the EiE curriculum across 75 schools in the treatment and 75 schools in the control group samples. Two teachers per school are included in one treatment/control condition per school. Outcome measures for students include performances on project-specific measures that have been examined for technical quality of validity and reliability. A set of additional research-based survey instruments validated for use in the EiE context are also used to collect data about students' attitudes, perceptions, interest and motivation toward science and engineering. A robust fidelity of implementation research plan is being implemented that will include teachers surveys, pre and post assessments, teacher logs, as well as student engineering journals and student work from classroom implementation. The fidelity of implementation is further studied with forty treatment and ten control teachers through classroom observations and interviews.

The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level. Engineering design has not been emphasized in the elementary classroom, lagging behind instruction in science with which teachers are more familiar. The results of this study inform practitioners and policy makers about what works, for whom and under what conditions. Information about the different contexts in which the curriculum has been implemented supports the dissemination of evidence-based research and development practices to strengthen STEM learning for all students.

Core Math Tools

This project is developing Core Math Tools, a suite of Java-based software including a computer algebra system (CAS), interactive geometry, statistics, and simulation tools together with custom apps for exploring specific mathematical or statistical topics. Core Math Tools is freely available to all learners, teachers, and teacher educators through a dedicated portal at the National Council of Teachers of Mathematics (NCTM) web site.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1201917
Funding Period: 
Sun, 01/15/2012 to Mon, 12/31/2012
Project Evaluator: 
David Barnes, NCTM
Full Description: 

Core Math Tools is a project from Western Michigan University that meets the urgent need of providing mathematical tools that students can use as they explore and learn mathematical concepts that are aligned with the Common Core State Standards in Mathematics (CCSSM). The developers have repurposed and modified tools originally designed for an NSF-funded curriculum project (e.g., Core-Plus Mathematics), creating a suite of tools that supports student learning of mathematics regardless of the curricula choice. Core math Tools is Java-based software that includes a computer algebra system(CAS, interactive geometry, statistics, and simulation tools together with custom apps for exploring specific mathematical and statistical topics. The designers provide exemplary lessons illustrating how the software can be used in the spirit of the new CCSSM. The goal of the project is to provide equitable and easy access to mathematical software both in school and outside of school. The tools are available to all learners and teachers through the web site of the National Council of Teachers of Mathematics (NCTM). The web site includes feedback loops for teachers to provide information about the tools. By using the NCTM website, the tools can be downloaded for use by teachers and students. The dedicated portal on the NCTM website allows supervisors to use the tools in professional development, teachers to use the tools as an integral part of instruction, and students to use the tools for exploring, conjecturing, and problem solving.

CAREER: Investigating Middle and Secondary Mathematics Teachers' Transformative Learning of Statistics Within Professional Development

The project will examine how teachers reason about variation subsequent to focused instruction and contribute knowledge to in-service middle and secondary mathematics teacher education by targeting characteristics of professional development that might support teachers' reasoning about variation in increasingly sophisticated ways. The project will produce a coherent collection of shareable instructional materials for use in introductory statistics education and teacher education in statistics.

Award Number: 
1149403
Funding Period: 
Fri, 06/01/2012 to Fri, 05/31/2019
Full Description: 

This CAREER project addresses the professional development of middle and secondary mathematics teachers by investigating teachers' statistical reasoning and targeting characteristics of professional development that support teachers' development of increasingly sophisticated ways to reason about variation. Statistical variation plays a critical role throughout statistical investigation.

The project integrates educational and research activities in its design and implementation of a professional development program and research on the professional development. The research addresses three interrelated questions: In a professional development program that encourages reasoning about variation from multiple perspectives and that encourages dilemma, critical reflection, and rational discourse:

1. How do middle and secondary mathematics teachers reason about variation from design, data-centric, and modeling perspectives?

2. In what ways do dilemma, critical reflection, and rational discourse affect teachers' reasoning about variation?

3. How do teachers differently engage with and benefit from dilemma, critical reflection, and rational discourse?

The project relies on multiple data sources and strategically chosen combinations of qualitative and quantitative methods to answer the three research questions. Data sources from two cohorts of teachers include statistics assessments, interviews, video-recordings of program activities, reflective journals, and classroom observations.

The project will examine how teachers reason about variation subsequent to focused instruction and contribute knowledge to in-service middle and secondary mathematics teacher education by targeting characteristics of professional development that might support teachers' reasoning about variation in increasingly sophisticated ways. The project will produce a coherent collection of shareable instructional materials for use in introductory statistics education and teacher education in statistics.

Model of Research-Based Education for Teachers

This project is conducting a longitudinal study of the effects of a pre-service elementary science education.  Through overlapping studies on the pre-service teachers (PSTs) and in-service teachers who are graduates of the program, this project is seeking to analyze the impact of three essential dimensions of teacher preparation: inquiry-based science content courses, science methods/practicum courses, and k-12 mentor teachers.

Partner Organization(s): 
Award Number: 
1119678
Funding Period: 
Thu, 09/01/2011 to Fri, 08/31/2018
Project Evaluator: 
Horizon Reseach Inc.
Full Description: 

This project is conducting a longitudinal study of the effects of an innovative pre-service elementary science education program at Western Washington University which was established with support from an NSF MSP grant.

There are four overlapping studies on the pre-service teachers (PSTs) and in-service teachers who are graduates of the program: (1) Comparing the pedagogical beliefs and skills of elementary PSTs as a function of the number (0-3) of reformed science content courses taken; (2) Comparing the same outcome variables for PSTs placed for student teaching with trained or untrained mentor teachers; (3) Comparing the impact of the science methods/practicum on PSTs who experienced the WWU reformed courses and those who did not; (4) An exploratory case study of the instructional practices of 20 novice elementary science teachers. The research utilizes the following existing instruments. (1) CLASS, the Colorado Learning Attitudes on Science Survey, (2) the Horizon Classroom Observation Protocol, (3) the Teacher Beliefs about Effective Science Teaching (TBEST) survey by Horizon Research Inc. 

The new undergraduate program at WWU has implemented and institutionalized many of the recommendations for best practices in preparing elementary school teachers in science. This project is seeking to analyze the impact of three essential dimensions of teacher preparation: inquiry-based science content courses, science methods/practicum courses, and k-12 mentor teachers.

Persistence of Teacher Change in Rural Schools: Assessing the Short- and Long-Term Impact of Professional Development on K-2 Science Instruction

This research study is examining the persistence of improved teacher skills achieved during the K-2 Science & Technology Assistance for Rural Teachers and Small Districts project (K-2 STARTS). K-2 STARTS provided four years of professional development to teachers in 16 rural school districts with high populations of traditionally underserved students. Project data indicates that the project increased teacher content knowledge, pedagogical content knowledge, abilities to integrate science and literacy and to use research-based instructional strategies.

Project Email: 
Lead Organization(s): 
Award Number: 
1119589
Funding Period: 
Thu, 09/15/2011 to Sun, 08/31/2014
Project Evaluator: 
Loretta Kelley
Full Description: 

This research study is examining the persistence of improved teacher skills achieved during the K-2 Science & Technology Assistance for Rural Teachers and Small Districts project (K-2 STARTS) funded by the State of California.

K-2 STARTS provided four years of professional development to teachers in 16 rural school districts in California with high populations of traditionally underserved students. 39 teachers each received 110 hours of professional development. Project data indicate that the project met its goals by increasing teacher content knowledge, pedagogical content knowledge, abilities to integrate science and literacy and to use research-based instructional strategies. K-2 STARTS also improved the capacity of teachers to use science resources and to network with teachers from their own and other rural districts.

This project is doing a longitudinal research study by extending data collection for 35 teachers for two years after the end of K-2 STARTS. It is using the measures from the original evaluation, which include teacher surveys and interviews, classroom observations, surveys for school administrators, teacher-developed unit artifacts, and student science notebooks, and adding two more measures, administrative interviews and school/district documents. In the final year, the project is doing data analysis and dissemination. The project is exploring the persistence of the knowledge and skills of the teachers over time, as well as their continued use of science instructional practices. It will also study the persistence of school/district support for science education.

External evaluation is being conducted by Dr. Loretta Kelley of Kelley, Peterson, and Associates, Inc. It focuses on project progress through formative and summative components.

Longitudinal studies of the effects of teacher professional development are rare. The increased knowledge concerning the persistence of the new knowledge and skills obtained through K-2 STARTS professional development, and why and to what extent they decay over time, is a significant goal.

Constructing and Critiquing Arguments in Middle School Science Classrooms: Supporting Teachers with Multimedia Educative Curriculum Materials

This project is developing Earth and Space Science multimedia educative curriculum materials (MECMs) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The project is investigating the impact of the MECMs on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments.

Project Email: 
Award Number: 
1119584
Funding Period: 
Thu, 09/01/2011 to Sun, 08/31/2014
Project Evaluator: 
Naomi Hupert
Full Description: 

This project between Lawrence Hall of Science and Boston College is developing Earth and Space Science multimedia educative curriculum materials (MECM) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The MECMs include videos, voice-over narratives, diagrammatic representations, images of student writings, and text. The PIs are investigating the impact of the MECMS on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question, with four sub questions, focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments. The four sub questions are: What factors impact teachers' implementation of argumentation instruction in the classroom? How can MECMs be designed to positively impact teachers' beliefs and their pedagogical content knowledge (PCK) about argumentation? What is the relationship between teachers' beliefs about the value of argumentation and their implementation of argumentation in the classroom? What impact do MECMs have on teachers' beliefs and PCK?

A mixed method approach is being used to assess teachers' beliefs and pedagogical content knowledge. The PIs are developing and pilot testing teachers' beliefs about scientific argumentation. They will use an iterative design process for the MECMs that will involve 50 teachers. Twenty-five phone interviews will be conducted to investigate factors that impact teachers' implementations of scientific argumentation. Three iterative cycles of design and testing include focus groups, a pilot of the MECMs in six classrooms, and a national field test of 30 classrooms. One hundred teachers will field test the assessment followed by collection of six case studies and data analyses. The project's formative and summative evaluations include monitoring and providing feedback for all activities, and assessments of program implementation and impact.

Teachers need support using field tested multimedia educative materials (MECMs) in learning and delivering science content using a scientific argumentation process. By delivering and engaging the teaching and learning process through iterative design of Earth and Space Science multimedia educative curriculum materials, this project would provide, if successful, teachers and students with the necessary literacy and knowledge about scientific argumentation. The MECMs and approach has the potential for broad implementation in middle schools and beyond for delivering Earth and Space science material to support and teach scientific argumentation.

Morehouse College DR K-12 Pre-service STEM Teacher Initiative

This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs  

Lead Organization(s): 
Award Number: 
1119512
Funding Period: 
Fri, 07/15/2011 to Sat, 06/30/2018
Project Evaluator: 
Melissa K. Demetrikopoulos
Full Description: 

Morehouse College proposed a research and development project to recruit high school African American males to begin preparation for secondary school science, technology, engineering and mathematics(STEM) teaching as a career. The major goal of the program is to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs including: (a) How do students who remain in STEM education differ from those who leave and how do these individual factors (e.g. student preparation, self-efficacy, course work outcomes, attitudes toward STEM/STEM education, connectivity to STEM/STEM education communities, learning styles, etc) enhance or inhibit interest in STEM teaching among African American males? (b) What organizational and programmatic factors (e.g. high school summer program, Saturday Academy, pre-freshman program, summer research experience, courses, enhanced mentoring, cyber-infrastructure, college admissions guidance, leadership training, instructional laboratory, program management, faculty/staff engagement and availability, Atlanta Public Schools and Morehouse College articulation and partnership) affect (enhance or inhibit) interest in STEM teaching among African American males?

This pre-service program for future secondary STEM teachers recruits promising African American male students in eleventh grade and prepares them for entry into college.  The program provides academic guidance and curriculum-specific activities for college readiness, and creates preparation for secondary science and math teaching careers.   This project is housed within the Division of Science and Mathematics at Morehouse College and engages in ongoing collaboration with the Atlanta Public School (APS) system and Fulton County School District (FCS). The APS-FCS-MC collaboration fosters access and success of underrepresented students through (a) early educational intervention practices; (b) enhanced academic preparation; and (c) explicit student recruitment. 

The program consists of six major program components: High School Summer Program; Saturday Academy I, II, and III; Pre-Freshman Summer Program; and Summer Research Experience, which begins in the summer between the student’s junior and senior years of high school and supports the student through his sophomore year of college.  To date, collaborations between education and STEM faculty as well as between Morehouse, APS, and FCS faculty have resulted in development and implementation of all six program components.   Students spent six weeks in an intensive summer program with a follow-up Saturday Academy during their senior year before formally beginning their academic careers at Morehouse College. The program integrates STEM education with teacher preparation and mentoring in order to develop secondary teachers who have mastery in both a STEM discipline as well as educational theory. 

This pre-service program for future teachers recruited promising eleventh grade African American male students from the Atlanta Public School District to participate in a four-year program that will track them into the Teacher Preparation program at Morehouse College. The research focuses on the utility and efficacy of early recruitment of African American male students to STEM teaching careers as a mechanism to increase the number of African American males in STEM teaching careers.

Cluster Randomized Trial of the Efficacy of Early Childhood Science Education for Low-Income Children

The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).

Project Email: 
Award Number: 
1119327
Funding Period: 
Mon, 08/15/2011 to Mon, 07/31/2017
Project Evaluator: 
Brian Dates, Southwest Counseling Services
Full Description: 

The research goal of this project is to evaluate whether an early childhood science education program, Head Start on Science, implemented in low-income preschool settings (Head Start) produces measurable impacts for children, teachers, and parents. The study is being conducted in eight Head Start programs in Michigan, involving 72 classrooms, 144 teachers, and 576 students and their parents. Partners include Michigan State University, Grand Valley State University, and the 8 Head Start programs. Southwest Counseling Solutions is the external evaluator.

The study is determining the efficacy of the Head Start on Science curriculum in two models, one in which 72 teachers participate in professional development activities (the intervention), and another in which 72 teachers receive the curriculum and teachers' guide but no professional development (the control). The teacher study is a multi-site cluster randomized trial (MSCRT) with the classroom being the unit of randomization. Four time points over two years permit analysis through multilevel latent growth curve models. For teachers, measurement instruments include Attitudes Toward Science (ATS survey), the Head Start on Science Observation Protocol, the Preschool Classroom Science Materials/Equipment Checklist, the Preschool Science Classroom Activities Checklist, and the Classroom Assessment Scoring System (CLASS). For students, measures include the "mouse house problem," Knowledge of Biological Properties, the physics of falling objects, the Peabody Picture Vocabulary Test-Fourth Edition, the Expressive Vocabulary Test-2, the Test of Early Mathematics Ability-3, Social Skills Improvement System-Rating Scales, and the Emotion Regulation Checklist. Measures for parents include the Attitudes Toward Science survey, and the Community and Home Activities Related to Science and Technology for Preschool Children (CHARTS/PS). There are Spanish versions of many of these instruments which can be used as needed. The external evaluation is monitoring the project progress toward its objectives and the processes of the research study.

This project meets a critical need for early childhood science education. Research has shown that very young children can achieve significant learning in science. The curriculum Head Start on Science has been carefully designed for 3-5 year old children and is one of only a few science programs for this audience with a national reach. This study intends to provide a sound basis for early childhood science education by demonstrating the efficacy of this important curriculum in the context of a professional development model for teachers.

InterLACE: Interactive Learning and Collaboration Environment

This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.

Lead Organization(s): 
Award Number: 
1119321
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2013
Full Description: 

This project, under the Tufts University Center for Engineering Education and Outreach (CEEO) designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on prior NSF-funded work on RoboBooks, an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments. The InterLACE team hypothesizes that technology seamlessly integrating physics content and process skills within a classroom learning activity will provide a wide variety of student benefits, ranging from improved learning outcomes and increased content knowledge to gains in attitudinal and social displays as well.

The hypothesis for this work is based on research that indicates teachers believe proper implementation of design-based, inquiry projects are time consuming and can be difficult to manage and facilitate in classrooms without great scaffolding or other supports. Using design-based research with a small number of teachers and students, the PIs iteratively develop the system and supporting materials and generate a web-based implementation that supports students through the various stages of design inquiry. A quasi-experimental trial in the final years of the project is used to determine the usability of the technology and efficacy of the system in enhancing teaching and learning. Through the tools and activities developed, the researchers anticipate showing increases in effective inquiry learning and enhanced accessibility to meet the needs of diverse learners and teachers, leading to changes in classroom practice.

Through this project the PIs (1) gain insights that will enable them to refine the InterLACE platform so it can be implemented and brought to scale in the near terms as a support for design-based inquiry science projects, and (2) advance theory, design and practice to support the design of technology-based learning environments, and (3) understand how connecting students? hypotheses, ideas, and data impacts their learning of physics content and scientific inquiry skills.

Pages

Subscribe to Professional Development