Technology

Engineering for All (EfA)

This project creates, tests and revises two-six week prototypical modules for middle school technology education classes, using the unifying themes and important social contexts of food and water. The modules employ engineering design as the core pedagogy and integrate content and practices from the standards for college and career readiness.

Lead Organization(s): 
Award Number: 
1316601
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

The Engineering for All project creates, tests and revises two-six week prototypical modules for middle school technology education classes, using the unifying themes and important social contexts of food and water. The modules employ engineering design as the core pedagogy and integrate content and practices from the standards for college and career readiness. Embedded assessments are developed and tested to make student learning visible to both teachers and students. Professional development for a limited group of teachers is used to increase their knowledge of engineering design and to test instruments being developed to measure (a) student and teacher capacity to employ informed design practices and (b) teacher design pedagogical content knowledge.

The project leadership is experienced at creating materials for engineering and technology and in providing professional development for teachers. The assessments and instruments are created by educational researchers. The advisory board includes engineers, science and engineering educators, and educational researchers to guide the development of the modules, the assessments and the instruments. An external evaluator reviews the protocols and their implementation.

This project has the potential to provide exemplary materials and assessments for engineering/technology education that address standards, change teacher practice, and increase the capacity of the engineering/technology education community to do research.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

ITEAMS Longitudinal Study

The objective of this study is to examine the impact of ITEAMS intervention strategies on student persistence in high school STEM course-taking and career expectations, and the value that students place on STEM careers.

Lead Organization(s): 
Award Number: 
1355323
Funding Period: 
Sun, 09/15/2013 to Wed, 04/30/2014
Full Description: 

The objective of this study at Harvard University is to examine the impact of ITEAMS (Innovative Technology-Enabled Astronomy for Middle Schools) intervention strategies on student persistence in high school STEM course-taking and career expectations, and the value that students place on STEM careers. The central research questions are: 1) does ITEAMS participation boost students' STEM course-taking and their interest in, and valuation of, STEM careers throughout their high school years; 2) to what extent did students' ITEAMS experiences, in terms of knowledge and disposition, have an effect; and 3) which ITEAMS strategies or attributes have been most effective in bringing about positive outcomes? Special focus is on the predictors of persistence for girls and minority students.

The project utilizes a mix of interviews and surveys with current high school students who in previous years participated in ITEAMS (DRL-0833378) as middle-school students, and who are now juniors and seniors. The project surveys a randomly selected cohort of 75 former ITEAMS participants who were enrolled in ITEAMS for two or three years. The project-specific survey instrument includes pertinent demographic questions. The random selection of up to 15 surveyed ITEAMS students for in-depth interviews is also included.

CAREER: Scaffolding Engineering Design to Develop Integrated STEM Understanding with WISEngineering

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1253523
Funding Period: 
Mon, 07/01/2013 to Sat, 06/30/2018
Full Description: 

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this DRK-12 CAREER project from the University of Virginia. Research on the learning sciences with a focus on a knowledge integration perspective of helping students build and retain connections among normative and relevant ideas and existing knowledge structures the development of the WiseEngineering learning environment, an online learning management system that scaffolds engineering design projects. WiseEngineering provides support for students and teachers to conduct engineering design projects in middle and high school settings. Dynamic virtualizations that enable learners to observe and experiment with phenomena are combined with knowledge integration patterns to structure a technology rich learning environments for students. The research focuses on the ways in which metacognition, namely self-knowledge and self-regulation interact with learning in these technology-enhanced environments.Embedded assessments and student pre and post-testing of key science and mathematics constructs provide evidence of the development of student understanding.A rubric that examines knowledge integration is used to examine the extent wo which students understand how multiple concepts interact in a given context. A mixed-methods research design will examines how students and teachers in middle school mathematics and science courses develop understanding of the underlying principles in STEM. The PI of this award has integrated research and education in this proposal by connecting her research on engineering design and technology-enabled learning environments with the preservice secondary education methods course that she teachs. In addition, she has folded the research into the instructional technology graduate courses of which she is the instructor.

Engineering design is a key area of the Next Generation Science Standards that requires additional curricular materials development and research on how students integrate concepts across mathematics and science to engage in these engineering practices. The technology-rich learning environment, WISEngineering, provides the context to examine how student engineering design principles evolve over time. The opportunitiy for students to provide critiques of each others' work provides the context in which to examine crucial metacognitive principles. Classroom observations and teacher interviews provides the opportunity to examine how the technology-rich engineering design learning environment integrates STEM knowledge for teachers as well as students.

Innovate to Mitigate: A Crowdsourced Carbon Challenge

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316225
Funding Period: 
Sun, 09/01/2013 to Mon, 08/31/2015
Full Description: 

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines. Areas in which active cutting edge research on greenhouse gas mitigation is currently taking place include, among others, biology (photosynthesis, or biomimicry of photosynthesis to sequester carbon) and chemistry (silicon chemistry for photovoltaics, carbon chemistry for decarbonization of fossil fuels). Collaborating in teams of 2-5, participants engage with the basic science in these areas, and become skilled at applying scientific ideas, principles, and evidence to solve a design problem, while taking into account possible unanticipated effects. They refine their solutions based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

An interactive project website describes specifications for the challenge and provides rubrics to support rigor. It includes a library of relevant scientific resources, and, for inspiration, links to popular articles describing current cutting-edge scientific breakthroughs in mitigation. Graduate students recruited for their current work on mitigation projects provide online mentoring. Social networking tools are used to support teams and mentors in collaborative scientific problem-solving. If teams need help while working on their challenges, they are able to ask questions of a panel of expert scientists and engineers who are available online. At the end of the challenge, teams present and critique multimedia reports in a virtual conference, and the project provides awards for excellence.

The use of open innovation challenges for education provides a vision of a transformative setting for deep learning and creative innovation that at the same time addresses a problem of critical importance to society. Researchers study how this learning environment improves learning and engagement among participants. This approach transcends the informal/formal boundaries that currently exist, both in scientific and educational institutions, and findings are relevant to many areas of research and design in both formal and informal settings. Emerging evidence suggests that open innovation challenges are often successfully solved by participants who do not exhibit the kinds of knowledge, skill or disciplinary background one might expect. In addition, the greater the diversity of solvers is, the greater the innovativeness of challenge solutions tends to be. Therefore, it is expected that the free choice learning environment, the nature of the challenge, the incentives, and the support for collaboration will inspire the success of promising young participants from underserved student populations, as well as resulting in innovative solutions to the challenge given the diversity of teams.

Systemic Transformation for Inquiry Learning Environments (STILE) for Science, Technology, Engineering and Mathematics

The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.

Lead Organization(s): 
Award Number: 
1238643
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

The Center for Technology and School Change (CTSC) at Teachers College, Columbia University and the Center for Environmental Research and Conservation (CERC) at Columbia University's Earth Institute are working in partnership with three STEM focused New York City schools (K-8) to develop a systemic, transformative approach for interdisciplinary STEM teaching and learning. The planned model prepares teachers to design innovative, authentic STEM projects, and supports administrators in leading such efforts.

CTSC has identified key elements of a robust design process to help teachers move from business- as-usual pedagogy to dramatically new practices in content, pedagogy, and technology use. The program also identifies an interdisciplinary STEM perspective, supported with experts from CERC who provide STEM fieldwork expertise as part of the overall design. Moreover, the project creates research and educational collaborations with diverse, community-based groups (e.g., urban nature centers). The project uses a mobile learning platform to leverage social networking among schools, teachers, students, STEM experts, parents and the community.

The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.

Cyber-Enabled Learning: Digital Natives in Integrated Scientific Inquiry Classrooms (Collaborative Research: Campbell)

This project explores the potential of information and communications technologies (ICT) as cognitive tools for engaging students in scientific inquiry and for enhancing teacher learning. A comprehensive professional development program of over 240 hours, along with follow-up is used to determine how teachers can be supported to use ICT tools effectively in classroom instruction to create meaningful learning experiences for students, reduce the gap between formal and informal learning, and improve student learning outcomes.

Award Number: 
1401350
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

There is an increasing gap between the use of cyber-enabled resources in schools and the realities of their use by students in out of school settings. This project explores the potential of information and communications technologies (ICT) as cognitive tools for engaging students in scientific inquiry and for enhancing teacher learning. A comprehensive professional development program of over 240 hours, along with follow-up is used to determine how teachers can be supported to use ICT tools effectively in classroom instruction to create meaningful learning experiences for students, reduce the gap between formal and informal learning, and improve student learning outcomes. In the first year, six teachers from school districts in Utah and New York are prepared to become teacher leaders and advisors. Then three cohorts of 30 teachers matched by characteristics are provided professional development and field test units over two years in a delayed-treatment design. Biologists from Utah State University and New York College of Technology develop four modules that meet the science standards for both states -- the first being changes in the environment. Teachers are then guided to develop additional modules. The key technological resource to be used in the project is the Opensimulator 3D application Server (OpenSim), an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics.

The effects of the professional development program are measured by classroom observations using RTOP and Technology Use in Science Instruction (TUSI), selected interviews of teachers and students, and validated assessments of student learning. An external evaluator assesses the quality of the professional development activity and the quality of the cyber-enabled learning resources and reviews the research design and implementation. An advisory board will monitor the project.

The principal outcome of this project will be insight into the professional development needed to make teachers comfortable teaching with the kinds of multi-user simulations and communication technologies that students use everyday. The enactment with OpenSim also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with selected cyber-enabled cognitive tools such as GoogleEarth and Biologica.

This project was associated with the NSF award number 1258854 with the same title.

(Note: This project was originally awarded to the Lead Organization, Utah State University under the Award #1020086 and for the Funding Period:  Wed, 09/01/2010 - Mon, 08/31/2015. Due to a change in institution by the PI of the project, a new award was issued: Award # 1258854)

FUN: A Finland US Network for Engagement and STEM Learning in Games

As part of a SAVI, researchers from the U.S. and from Finland will collaborate on investigating the relationships between engagement and learning in STEM transmedia games. The project involves two intensive, 5 day workshops to identify new measurement instruments to be integrated into each other's research and development work. The major research question is to what degree learners in the two cultures respond similarly or differently to the STEM learning games.

Lead Organization(s): 
Award Number: 
1252709
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

As part of a SAVI, researchers from the U.S. and from Finland will collaborate on investigating the relationships between engagement and learning in STEM transmedia games. The members of U.S. Team for this project come from TERC, WGBH and Northern Illinois University. The project involves two intensive, 5 day workshops to identify new measurement instruments to be integrated into each other's research and development work. The major research question is to what degree learners in the two cultures respond similarly or differently to the STEM learning games.

Radical Innovation Summit

This workshop convenes leading practitioners and scholars of innovation to collectively consider how education in the US might be reconfigured to both support and teach innovation as a core curriculum mission, with a focus on STEM education. Workshop participants identify and articulate strategies for creating and sustaining learning environments that promise the development of innovative thinking skills, behaviors and dispositions and that reward students, faculty and administrator for practicing and tuning these skills.

Award Number: 
1241428
Funding Period: 
Mon, 10/01/2012 to Mon, 09/30/2013
Full Description: 

This workshop, hosted by the National Center for Supercomputing Applications (NCSA) and the Institute for Computing in Humanities, Arts and the Social Sciences (I-CHASS), convenes leading practitioners and scholars of innovation to collectively consider how education in the US might be reconfigured to both support and teach innovation as a core curriculum mission, with a focus on STEM education. Workshop participants identify and articulate strategies for creating and sustaining learning environments that promise the development of innovative thinking skills, behaviors and dispositions and that reward students, faculty and administrator for practicing and tuning these skills. A wiki or other private online space will be created where participants will be encouraged to continue discussions or comment further on ideas generated over the course of the workshop. Mapping social networks of and among participants provides insights into how innovation practices are shared and spread across relationships and networks. Findings from the workshop will be made available to others through a public web site.

Identifying and Measuring the Implementation and Impact of STEM School Models

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1238552
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

The study employs a longitudinal, mixed-methods research design over four years. Research questions are: (1) What are the intended components of each inclusive STEM school model?; (2) What is the status of the intended components of each STEM school model?; (3) What are the contexts and conditions that contribute to and inhibit the implementation of components that comprise the STEM schools' models?; and (4) What components are most closely related to desired student outcomes in STEM schools? Data gathering strategies include: (a) analyses of school components (e.g., structures, interactions, practices); (b) measures of the actual implementation of components through teacher, school principals, and student questionnaires, observation protocols, teacher focus groups, and interviews; (c) identification of contextual conditions that contribute to or inhibit implementation using a framework inclusive of characteristics of the innovation, individual users, leadership, organization, and school environment using questionnaires and interviews; and (d) measuring student outcomes using four cohorts of 9-12 students, including standardized test assessment systems, grades, student questionnaires (e.g., students' perceptions of schools and teachers, self-efficacy), and postsecondary questionnaires. Quantitative data analysis strategies include: (a) assessment of validity and reliability of items measuring the implementation status of participating schools; (b) exploratory factor analysis to examine underlying dimensions of implementation and learning conditions; and (c) development of school profiles, and 2- and 3-level Hierarchical Linear Modeling to analyze relationships between implementation and type of school model. Qualitative data analysis strategies include:(a) descriptions of intra- and inter-school implementation and factor themes, (b) coding, and (c) narrative analysis.

Expected outcomes are: (a) research-informed characterizations of the range of inclusive STEM high school models emerging across the country; (b) identification of components of STEM high school models important for accomplishing a range of desired student achievement; (c) descriptions of contexts and conditions that promote or inhibit the implementation of innovative STEM teaching and learning; (d) instruments for measuring enactment of model components and the learning environments that affect them; and (e) methodological approaches for examining relationships between model components and student achievement.

Pages

Subscribe to Technology