Technology

Changing Culture in Robotics Classroom (Collaborative Research: Schunn)

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1416984
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources. This project builds upon a ten year collaboration between Carnegie Mellon's Robotics Academy and the University of Pittsburgh's Learning Research and Development Center that studied how teachers implement robotics education in their classrooms and developed curricula that led to significant learning gains. This project will address the following three questions:

1.What kinds of resources are useful for motivating and preparing teachers to teach computational thinking and for students to learn computational thinking?

2.Where do teachers struggle most in teaching computational thinking principles and what kinds of supports are needed to address these weaknesses?

3.Can virtual environments be used to significantly increase access to computational thinking principles?

The project will augment traditional robotics classrooms and competitions with Robot Virtual World (RVW) that will scaffold student access to higher-order problems. These virtual robots look just like real-world robots and will be programmed using identical tools but have zero mechanical error. Because dealing with sensor, mechanical, and actuator error adds significant noise to the feedback students' receive when programming traditional robots (thus decreasing the learning of computational principles), the use of virtual robots will increase the learning of robot planning tasks which increases learning of computational thinking principles. The use of RVW will allow the development of new Model-Eliciting Activities using new virtual robotics challenges that reward creativity, abstraction, algorithms, and higher level programming concepts to solve them. New curriculum will be developed for the advanced concepts to be incorporated into existing curriculum materials. The curriculum and learning strategies will be implemented in the classroom following teacher professional development focusing on computational thinking principles. The opportunities for incorporating computationally thinking principles in the RVW challenges will be assessed using detailed task analyses. Additionally regression analyses of log-files will be done to determine where students have difficulties. Observations of classrooms, surveys of students and teachers, and think-alouds will be used to assess the effectiveness of the curricula in addition to pre-and post- tests to determine student learning outcomes.

A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in Science, Technology, Engineering and Mathematics Education

This project seeks to find ways to make the measurement sciences more useful to the production of intellective competence in diverse students of the STEM disciplines. A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in STEM Education will be established to address a set of issues posed as critical to the future of assessment for education and will undertake a series of activities culminating in the production of a report.

Lead Organization(s): 
Award Number: 
1433181
Funding Period: 
Mon, 09/01/2014 to Mon, 02/29/2016
Full Description: 

This project seeks to find ways to make the measurement sciences more useful to the production of intellective competence in diverse students of the STEM disciplines. A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in Science, Technology, Engineering and Mathematics Education will be established to address a set of issues posed as critical to the future of assessment for education. Building on the work of the Gordon Commission on the Future of Assessment in Education, the Study Group will undertake a series of activities culminating in the production of a report to the field including conceptual analyses, knowledge syntheses findings, and recommended specifications for a program of research and development to advance STEM education through assessment for education.

The Study Group will consist of fifteen research scientists and scholars of pedagogical practice who are being organized to inquire into the potential of the measurement sciences to more effectively inform the teaching and learning of STEM subject matter for students whose development is challenged by the demands of diversity, equity and excellence in intellective competence. Group members are especially interested in balancing the capabilities of the measurement sciences in the assessment of developed abilities, with equal strength in the analysis, documentation and understanding of the learning and teaching processes by which intellective competence is developed. The Group will conduct a conceptual inquiry into the interrelatedness of diversity, equity, and achievement in STEM. Special attention will be given to variance in attributions, contexts and perspectives associated with differences in life conditions, cultural experience and cultural identity. The Study Group will utilize in-person and virtual deliberations; consultative conversations; and commissioned position and review papers to generate recommendations and suggested specifications for programs of research, development and praxis designed to better inform the teaching and, especially, the learning of STEM disciplines.

Human Subjects Protection in the Digital Age

This project will convene a panel of experts in government, industry and academia to raise and discuss emerging concerns for human subjects' protections in the digital age. This project will support scholarly discussion on human subjects' protections in the digital age with implications for funding agencies, schools, and those who work with human subjects in a variety of environments.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1419055
Funding Period: 
Sat, 03/15/2014 to Sat, 02/28/2015
Full Description: 

This project will convene a panel of experts in government, industry and academia to raise and discuss emerging concerns for human subjects' protections in the digital age. Learners taking part in formal education, informal education, and out-of-school settings are subject to a ubiquitous tracking of their activities: locally, using the internet of things (e.g., smart phones, smart sensors and other cyberphysical devices), and globally, via the internet. This tracking may include data tracked passively (e.g., online purchases) or data made available on social media websites by the learners themselves. In addition, the use of the longitudinal data collected by local educational agencies for research is an increasingly political concern. Decisions about the use of these data by university researchers and scholars are typically made by Institutional Review Board (IRB) offices. New guidelines on IRB practices are being considered by a number of bodies, including the National Research Council, which issued a report in early 2014.

This project will support scholarly discussion on human subjects' protections in the digital age with implications for funding agencies, schools, and those who work with human subjects in a variety of environments. The issues discussed are of national import, including, but not limited to FERPA privacy concerns. To the extent that US researchers work with data from other countries (e.g., via massive open online courses or MOOCs), the impact of the reports that will be produced as part of this conference for education research is potentially global.

Climate Change Narrative Game Education (CHANGE)

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316782
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science. The goal of this project is to develop a place-based futuristic gaming simulation model that can easily extend to the other locales in other states, based on local climate change effects, local stakeholders, local economic and social effects to motivate the high school students in that area. CHANGE uses: (a) scientifically realistic text narratives about future Florida residents (text stories with local Florida characters, many years in the future based on GCC), (b) local, place-based approach grounded in west-central Florida Gulf Coast using scientific data, (c) a focus on the built environment, (d) simulations & games based on scientific data to help students learn principles of GCC so students can experience and try to cope with the potential long term effect of GCC via role-play and science-based simulation, and (e) a web-based eBook narrative where sections of narrative text alternate with simulations/computer games. The proposed project will work with 25 high school Marine Science teachers in 25 schools in Hillsborough County, Florida. The project delivers new research for instructional technologists and serious game developers regarding effective interface and usability design of intermedia narrative gaming-simulations for education.

This project employs and researches innovative models for delivering high school GCC education. GCC is a complex topic involving numerous factors and uncertainties making teaching this extremely important topic very difficult. The pioneering techniques proposed for this project will advance science education of GCC. It also will deliver new research for instructional technologists and serious game developers regarding effective interface and usability design of intermedia narrative gaming-simulations for education. Effective education is probably the most crucial part in our ability to cope with climate change. CHANGE will educate underserved low SES and minority high school students in Hillsborough County, and later elsewhere, with a model making GCC personally relevant to them.

The Validity of Technology-Enhanced Assessment in Geometry

This project contributes to the small research base by exploring the validity of Technology-Enhanced Items (TEIs) in the context of elementary geometry. The project addresses three research questions: 1) To what extent are TEIs a valid measurement of geometry standards in the elementary grades?; 2) To what extent do TEIs provide an improved measurement compared to SR items?; and 3) What are the general characteristics of mathematics standards that might be better measured through TEIs?

Lead Organization(s): 
Award Number: 
1316557
Funding Period: 
Thu, 08/01/2013 to Thu, 12/31/2015
Full Description: 

Assessment developers, state departments of education, and national consortia have focused extensive efforts on including Technology-Enhanced Items (TEIs) on summative and formative assessments. TEIs have a number of potential benefits over traditional, selected-response (SR) items, including the potential to measure higher-level constructs, the reduction of the effects of test-taking skills and guessing, the capture of rich diagnostic information, the reduction of cognitive load from non-relevant constructs, and the engaging nature of their design. The first three benefits are true of constructed-response (CR) items, but TEIs have the added benefit of being automatically scored by computer. Despite the potential benefits of TEIs, and the strong push to include these types of items in assessments, there is a death of research on the validity of inferences made by TEIs and on whether TEIs provide improved measurement over traditional item types. The Validity of Technology-Enhanced Assessment in Geometry (VTAG) project contributes to the small research base by exploring the validity of TEIs in the context of elementary geometry.

The project addresses three research questions:

RQ1: To what extent are TEIs a valid measurement of geometry standards in the elementary grades?

RQ2: To what extent do TEIs provide an improved measurement compared to SR items?

RQ3: What are the general characteristics of mathematics standards that might be better measured through TEIs?

To address these research questions, the researchers develop 20 items (ten SR items and 10 TEIs) for each of the seven Common Core State Standards in fourth and fifth grade geometry. The researchers collect validity evidence using expert review, cognitive labs, and classroom administration of the items. The first two research questions are addressed by evaluating the validity of the items based on a variety of sources, including test content, internal structure, the relationship to other variables, and student response processes. To address the third research question, informed by the results of the prior two, the researchers use qualitative analysis to identify common themes of the standards that were identified as being better measured through TEIs.

Promoting Students' Spatial Thinking in Upper Elementary Grades using Geographic Information Systems (GIS)

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316660
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The study incorporates the latest developments in the use of Geographic Information Systems (GIS) within the classroom. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation. Geography teachers in elementary schools are trained to use GIS software to create digital maps specific to the subject matter and projects on which their students work. Students then work in small collaborative groups and engage in open discussions designed to enhance the development and use of their spatial and multi-step causal reasoning.

GIS has been used in middle and high school settings. This project introduces GIS to upper elementary grades particularly to allow students an early opportunity to be involved in meaningful data and map-driven activities to promote their spatial skills. The proposal team predicts that the traditional gap between girls and boys in spatial skills will shrink with training thus will be strongly pronounced in the experimental relative to control groups. The project documents the effectiveness of instructional practices that are likely to enhance multistep reasoning, systems thinking, conceptual and spatial understanding, and motivation for learning while learning to work with maps to solve problems involving geography and ecological awareness. The project develops instructional methods that incorporate innovative tools for promoting problem solving to address real-life issues in this increasingly technology-driven era. The innovative tool is open-source and designed for professionals, but it can be modified to be child-friendly. Classroom activities are integrated with science and social studies curricula and content standards. Teachers are expected to find the curriculum attractive and easy to implement.

Engineering for All (EfA)

This project creates, tests and revises two-six week prototypical modules for middle school technology education classes, using the unifying themes and important social contexts of food and water. The modules employ engineering design as the core pedagogy and integrate content and practices from the standards for college and career readiness.

Lead Organization(s): 
Award Number: 
1316601
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

The Engineering for All project creates, tests and revises two-six week prototypical modules for middle school technology education classes, using the unifying themes and important social contexts of food and water. The modules employ engineering design as the core pedagogy and integrate content and practices from the standards for college and career readiness. Embedded assessments are developed and tested to make student learning visible to both teachers and students. Professional development for a limited group of teachers is used to increase their knowledge of engineering design and to test instruments being developed to measure (a) student and teacher capacity to employ informed design practices and (b) teacher design pedagogical content knowledge.

The project leadership is experienced at creating materials for engineering and technology and in providing professional development for teachers. The assessments and instruments are created by educational researchers. The advisory board includes engineers, science and engineering educators, and educational researchers to guide the development of the modules, the assessments and the instruments. An external evaluator reviews the protocols and their implementation.

This project has the potential to provide exemplary materials and assessments for engineering/technology education that address standards, change teacher practice, and increase the capacity of the engineering/technology education community to do research.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

ITEAMS Longitudinal Study

The objective of this study is to examine the impact of ITEAMS intervention strategies on student persistence in high school STEM course-taking and career expectations, and the value that students place on STEM careers.

Lead Organization(s): 
Award Number: 
1355323
Funding Period: 
Sun, 09/15/2013 to Wed, 04/30/2014
Full Description: 

The objective of this study at Harvard University is to examine the impact of ITEAMS (Innovative Technology-Enabled Astronomy for Middle Schools) intervention strategies on student persistence in high school STEM course-taking and career expectations, and the value that students place on STEM careers. The central research questions are: 1) does ITEAMS participation boost students' STEM course-taking and their interest in, and valuation of, STEM careers throughout their high school years; 2) to what extent did students' ITEAMS experiences, in terms of knowledge and disposition, have an effect; and 3) which ITEAMS strategies or attributes have been most effective in bringing about positive outcomes? Special focus is on the predictors of persistence for girls and minority students.

The project utilizes a mix of interviews and surveys with current high school students who in previous years participated in ITEAMS (DRL-0833378) as middle-school students, and who are now juniors and seniors. The project surveys a randomly selected cohort of 75 former ITEAMS participants who were enrolled in ITEAMS for two or three years. The project-specific survey instrument includes pertinent demographic questions. The random selection of up to 15 surveyed ITEAMS students for in-depth interviews is also included.

CAREER: Scaffolding Engineering Design to Develop Integrated STEM Understanding with WISEngineering

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

Lead Organization(s): 
Award Number: 
1253523
Funding Period: 
Mon, 07/01/2013 to Sun, 06/30/2019
Full Description: 

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this DRK-12 CAREER project from the University of Virginia. Research on the learning sciences with a focus on a knowledge integration perspective of helping students build and retain connections among normative and relevant ideas and existing knowledge structures the development of the WiseEngineering learning environment, an online learning management system that scaffolds engineering design projects. WiseEngineering provides support for students and teachers to conduct engineering design projects in middle and high school settings. Dynamic virtualizations that enable learners to observe and experiment with phenomena are combined with knowledge integration patterns to structure a technology rich learning environments for students. The research focuses on the ways in which metacognition, namely self-knowledge and self-regulation interact with learning in these technology-enhanced environments.Embedded assessments and student pre and post-testing of key science and mathematics constructs provide evidence of the development of student understanding.A rubric that examines knowledge integration is used to examine the extent wo which students understand how multiple concepts interact in a given context. A mixed-methods research design will examines how students and teachers in middle school mathematics and science courses develop understanding of the underlying principles in STEM. The PI of this award has integrated research and education in this proposal by connecting her research on engineering design and technology-enabled learning environments with the preservice secondary education methods course that she teachs. In addition, she has folded the research into the instructional technology graduate courses of which she is the instructor.

Engineering design is a key area of the Next Generation Science Standards that requires additional curricular materials development and research on how students integrate concepts across mathematics and science to engage in these engineering practices. The technology-rich learning environment, WISEngineering, provides the context to examine how student engineering design principles evolve over time. The opportunitiy for students to provide critiques of each others' work provides the context in which to examine crucial metacognitive principles. Classroom observations and teacher interviews provides the opportunity to examine how the technology-rich engineering design learning environment integrates STEM knowledge for teachers as well as students.

Pages

Subscribe to Technology