Technology

Systemic Transformation of Inquiry Learning Environments for STEM (STILE 2.0)

The project is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.

Lead Organization(s): 
Award Number: 
1621387
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project at The Center for Technology and School Change (CTSC) at Teachers College, Columbia University, is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. This project will explore the most effective features for preparing teachers to design and implement authentic STEM learning experiences in twelve high need elementary and middle urban schools across New York City and Yorkers. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.

Participants in this project will design and implement transdisciplinary STEM projects and learn to develop and support STEM learning environments for their schools. As part of this overall process, researchers will refine a situated professional development curriculum, including a suite of digital case studies that will assist schools. The project will: 1) build a vision for trans-disciplinary STEM schooling; 2) design and implement STEM learning experiences; and 3) take capacity-building steps to sustain STEM practices. A mixed method design approach will be used to explore both the implementation of the project and the effect of implementation on participants.

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Transforming Teaching Through Implementing Inquiry (T2I2)

This project explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases the educator's teaching competencies and how to effectively teach. Student achievement is measured by comparing state assessments in: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment.

Award Number: 
1156629
Funding Period: 
Mon, 08/01/2011 to Fri, 07/31/2015
Full Description: 

Transforming Teaching Through Implementing Inquiry (T2I2) is a full research and development project that explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development (PD) for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases this target audience's: 1) understanding of engineering design concepts and ability to effectively teach them 2) understanding of how to address student learning needs 3) ability to manage, monitor, and adjust the learning environment 4) use of self assessment to enhance teaching ability and 5) engagement in a community of practice. These issues are of particular interest because of the limited resources in place to prepare pre-service engineering and CTE teachers, as well as a lack of in-service PD.

The content for the PD is grounded in the materials and processes of two projects reviewed by the National Research Council's (NRC) report review committee: Technology Education: Learning by Design for Middle Schools" and "Engineering by Design for High Schools." By incorporating an object-oriented generic system design (learning objects), the cyberinfrastructure is set to be reusable, adaptable, and scalable. These learning objects allow for customization of the learning experience, whereby learning facilitators or learners themselves can configure the system based on their specific needs. Delivering learning objects in an online framework enables teachers to develop and grow in a network community.

A mixed methods approach is used to determine effects of professional development. Student achievement is measured by comparing each site's state assessments in the following areas: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment. Both formative and summative evaluation strategies inform the development and implementation of the project. As such, the project will advance theory, design, and practice in middle and high school engineering.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Ramping Up Accessibility in STEM: Inclusively Designed Simulations for Diverse Learners

This project brings together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503439
Funding Period: 
Wed, 07/15/2015 to Fri, 06/30/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will bring together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities. The Physics Education Technology (PhET) Interactive Simulations project (University of Colorado Boulder) will develop and research interactive science and math simulations used by teachers and students around the world. The Inclusive Design Research Centre (OCAD University, Toronto, Ontario) is an international leader in inclusively designed technology, with the goal of designing for the full range of human diversity including those with and without disabilities. Together, the project team will engage in an iterative design process to develop innovative solutions for making the highly interactive environment of an educational simulation simultaneously intuitive, accessible, and supportive of exploration and discovery practices in science. Development efforts will focus on three inclusive simulations and optimize the design and implementation of several inclusive simulation features, including keyboard navigation, auditory descriptions for screen readers, the use of non-speech sounds to provide feedback (sonification), and the ability to control the simulation with assistive technology (AT) devices. For each simulation, professional development materials for teachers, including classroom activities and user guides, will be developed to support teachers in effectively using the inclusively designed simulations in their classrooms. 

Through new research, this project will seek to understand: 1) how inclusive simulations can support students with disabilities to engage in science practices, 2) how students with and without disabilities utilize inclusive simulations for learning STEM content, and 3) how students can engage in collaborative learning between students with and without disabilities - with an inclusive simulation. Researchers will use individual interviews with diverse students to closely examine these questions. The resulting resources, models, and tools will provide exemplars and important building blocks for an inclusively designed interactive curriculum, educational games, and assessment tools. Resulting simulations, research findings, design guidelines, and exemplars will be disseminated through the project team and advisor partner networks, education resource websites, and educator professional organizations.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Transformative Robotics Experience for Elementary Students (TREES)

This project aims to build elementary age students' content knowledge in robotics and computer science more broadly by fostering their disciplinary engagement and participation within a humanoid robots-programming environment. Fourth and fifth grade students will participate in a semester long course with a final project that involves bringing the robot to classrooms of first and second grade students to demonstrate the robot's capabilities and promote their disciplinary engagement with robotics and computer science.

Lead Organization(s): 
Award Number: 
1523010
Funding Period: 
Fri, 05/15/2015 to Sun, 04/30/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project, Transformative Robotics Experience for Elementary Students (TREES), aims to build elementary age students' content knowledge in robotics and computer science more broadly by fostering their disciplinary engagement and participation within a humanoid robots-programming environment. Fourth and fifth grade students from a collaborating school will participate in a semester long course with a final project that involves bringing the robot to classrooms of first and second grade students to demonstrate the robot's capabilities and promote their disciplinary engagement with robotics and computer science. Over the 2-year period, this project will involve a total of 50 elementary students, the majority of whom are from low socio-economic groups in Broward County, where there is a great need for building technological capabilities. This project will be conducted in an inclusive classroom setting where some participants will be high functioning students with autism and some English language learners (ELLs), allowing the project to reach a diverse population that has historically been underrepresented in STEM fields. Using a design-based approach, this exploratory EAGER project is pushing the boundary of a new and complex technology into elementary grades. Results will advance our understanding of how to create learning opportunities for diverse elementary students in robotics and computer science that would increase their content knowledge by fostering disciplinary engagement in order to prepare them for future learning in robotics, computer science, and STEM fields.

Strategies for Leading Classroom Discussions Aimed at Core Ideas and Scientific Modeling Practices

This project will use video case studies to identify key strategies used by exemplary teachers to guide class discussions. The project will study teachers in the areas of high school mechanics and electricity, and middle school life sciences, and is designed to develop the constructs and language that will enable us to describe key discussion leading strategies.

Award Number: 
1503456
Funding Period: 
Sat, 08/01/2015 to Tue, 07/31/2018
Full Description: 

The Next Generation Science Standards (NGSS) have set goals for students to learn scientific models as disciplinary core ideas in addition to scientific reasoning practices and cross cutting ideas. Given these advances in national standards, educators are now asking for details about: (a) strategies for teaching the core disciplinary ideas; (b) how to teach the components of scientific thinking practices; and (c) how to integrate those practices with the teaching of core ideas. This project will use video case studies to identify key strategies used by exemplary teachers to guide class discussions toward these goals. The project will study teachers in the areas of high school mechanics and electricity, and middle school life sciences, and is designed to develop the constructs and language that will enable us to describe key discussion leading strategies. Clarified descriptions of the strategies will be disseminated to teachers via a website on discussion leading strategies for building models as core ideas, and accompanied by real classroom examples.

In order to organize the strategies, the project will also combine the results of the classroom case studies with findings from studies of thinking processes in scientists to develop an integrated theoretical framework for model based learning and teaching in science. The theoretical framework will serve as a guide for organizing instruction, integrating research findings, and sequencing strategies for teacher educators and curriculum developers. The framework will start from practices in the NGSS standards for modeling and add detail by identifying smaller practices and supporting teaching strategies at four different time scale levels--from 5-second engagements with mental simulations, to the use of minutes-long constructive reasoning processes, to larger modeling cycles lasting roughly 10 minutes to hours, to model construction modes that can last 15 minutes to days. A simplified version of the theoretical framework will give a way to introduce teachers to strategies in an organized manner, one level at a time. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Thinking Spatially about the Universe: A Physical and Virtual Laboratory for Middle School Science (Collaborative Research: Goodman)

This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503395
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena (moon phases and eclipses; planetary systems around stars other than the Sun; and celestial motions within the broader universe) in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers. The research program will determine which elements in the labs best promote both spatial skills and understanding of core ideas in astronomy; and how then to optimize interactive dynamic visualizations toward these ends. Virtual models of the sky and universe will be created using WorldWide Telescope, a free visualization tool that runs on desktop computers, tablets, and mobile devices. The ThinkSpace lab materials will be available at no cost on popular curriculum-sharing sites, including PBS Learning Media and BetterLesson.

The ThinkSpace team will address two main research questions: 1) How can spatial tasks that blend physical and virtual models be embedded into a STEM curriculum in ways that lead to significant improvements in spatial thinking? and 2) How can practitioners optimize design of interactive, dynamic visualizations for teaching spatially complex concepts? The first year of the study will examine two of the lab units with four teachers and about 320 students. The second year of the study will be similar. The third year of the study will test all three lab units in 10 classrooms. Over this study, each week-long ThinkSpace Lab will be formatively tested, using pre/post written assessments of astronomy content and spatial thinking; pre/post interviews with students; and in-class video of students using the lab activities. Scaffolded learning designs will support students in making connections between different spatial views of the phenomena, and will guide them to construct explanations and argue from evidence about how various phenomena (e.g. moon phases) arise in the real Universe, as Next Generation Science Standards demand. The impact of the ThinkSpace labs will be felt far beyond astronomy because the learning models being tested can transfer to other fields where spatial models are critical, and findings on optimization of dynamic visualizations can help to inform instructional design in the age of online learning. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Teachers with GUTS: Developing Teachers as Computational Thinkers Through Supported Authentic Experiences in Computing Modeling and Simulation

This project directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum.

Lead Organization(s): 
Award Number: 
1503383
Funding Period: 
Mon, 06/01/2015 to Thu, 06/30/2016
Full Description: 

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by the Next Generation Science Standards to prepare middle school science teachers to implement rich computational thinking (CT) experiences, such as the use, creation and analysis of computer models and simulations, within science classes. 

The project, a partnership between the Santa Fe Institute and the Santa Fe Public School District, directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum. The PD program includes: an online PD network; workshops; webinars and conferences; practicum and facilitator support; and curricular and program guides. The overall approach to the project is design based implementation research (DBIR). Methods used for the implementation research includes: unobtrusive measures such as self-assessment sliders and web analytics; the knowledge and skills survey (KS-CT); interviews (teachers and the facilitators); analysis of teacher modified and created models; and observations of practicum and classroom implementations. Data collection and analysis in the implementation research serve two purposes: a) design refinement and b) case study development. The implementation research employs a mixed-method, nonequivalent group design with embedded case studies.

View videos from their Foundations unit:

 

Pages

Subscribe to Technology