Technology

Developing a Model of STEM-Focused Elementary Schools (eSTEM)

This project will study five elementary STEM schools from across the U.S. that are inclusive of students from underrepresented groups in order to determine what defines these schools and will use an iterative case study replication design to study the design and implementation of five exemplary eSTEM schools with the goal of developing a logic model that highlights the commonalities in core components and target outcomes across the schools, despite the different school contexts.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621005
Funding Period: 
Mon, 08/15/2016 to Wed, 07/31/2019
Full Description: 

In the United States (U.S.) certain groups are persistently underrepresented in science, technology, engineering, and mathematics (STEM) education and careers, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. Policymakers argue that future STEM workforce needs will only be met if there is broader diversity participating in STEM education and careers. Recent reports have suggested that the nation would benefit from more STEM-focused schools, including at the elementary school level, to inspire interest and prepare students for future STEM endeavors. However, there is currently little information on the number and quality of elementary STEM (eSTEM) schools and the extent to which underrepresented groups have access to them. This project will study five elementary STEM schools from across the U.S. that are inclusive of students from underrepresented groups in order to determine what defines these schools. The project team, which includes investigators from SRI International and George Mason University, initially identified twenty candidate critical components that define inclusive STEM-focused elementary schools and will refine and further clarify the critical components through the research study. The resulting research products could support the development of future eSTEM schools and research on their effectiveness.

The Discovery Research K-12 (DRK-12) program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This Exploratory Learning Strand project will use an iterative case study replication design to study the design and implementation of five exemplary eSTEM schools with the goal of developing a logic model that highlights the commonalities in core components and target outcomes across the schools, despite the different school contexts. A framework of twenty design components, taken from research on inclusive STEM high schools and research on successful elementary schools, will inform the data collection, analysis, and logic model development. Schools as critical cases will be selected through a nomination process by experts, followed by screening and categorization according to key design components. School documents and public database information, a school survey, and telephone interviews with school administrators will inform screening and selection of candidate schools. Researchers will then conduct multi-day, on-site visitations to each selected school, collecting data from classroom observations, interviews with students, focus groups with teachers and administrators, and discussions with critical members of the school community. The project is also gathering data on school-level student outcome indicators. Using axial and open coding, the analysis aims to develop rich descriptions that showcase characteristics of the schools to iteratively determine a theory of action that illustrates interconnections among context, design, implementation, and outcomes. Research findings will be communicated through a logic model and blueprint, school case study reports, and conference proceedings and publications that will be provided on a project website, providing an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. Findings will also be disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations, and webinars.

Enhancing Middle Grades Students' Capacity to Develop and Communicate Their Mathematical Understanding of Big Ideas Using Digital Inscriptional Resources (Collaborative Research: Phillips)

This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.

Lead Organization(s): 
Award Number: 
1620934
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The primary goal of this project is to help middle school students deepen and communicate their understanding of mathematics. The project will develop and test a digital platform for middle school mathematics classrooms. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class. The digital learning environment makes use of a problem-centered mathematics curriculum that evolved from extensive development, field-testing and evaluation, and is widely used in middle schools. The research will also contribute to understanding about the design and innovative use of digital resources and collaboration in classrooms as an increasing number of schools are drawing on these kinds of tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project will support students to collaboratively construct, manipulate, and interpret shared representations of mathematics using digital inscriptional resources. The research activities will significantly enhance our understanding of student learning in mathematics in three important ways. The project will report on how (1) evidence of student thinking is made visible through the use of digital inscriptional resources, (2) student inscriptions are documented, discussed, and manipulated in collaborative settings, and (3) students' conceptual growth of big mathematical ideas grows over time. An iterative design research process will incorporate four phases of development, testing and revision, and will be conducted to study student use of the digital learning space and related inscriptional resources. Data sources will include: classroom observations and artifacts, student and teacher interviews and surveys, student assessment data, and analytics from the digital platform. The process will include close collaboration with teachers to understand the implementation and create revisions to the resources.


Project Videos

2019 STEM for All Video Showcase

Title: Math Understanding in a Digital Collaborative Environment

Presenter(s): Alden Edson, Kristen Bieda, Chad Dorsey, Nathan Kimball, & Elizabeth Phillips


CAREER: A Study of Factors that Affect Middle School Levels of Readiness for Implementing STEM Programs

This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools.

Lead Organization(s): 
Award Number: 
1553098
Funding Period: 
Mon, 02/15/2016 to Sun, 01/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) proposal responsive to Program Solicitation NSF 15-555. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools. The project will make this determination through the use of a STEM level of readiness rubric developed through a previous award that will be further revised through this study. The rubric will document the participating schools' level of readiness at the principal, teacher, and student levels using 15 criteria that include a combination of essential supports, core elements, attributes, and characteristics about STEM through: (1) school leadership as the driver of change in education; (2) professional capacity among teachers and staff in all academic areas; (3) student-centered learning climate reflective of high-quality teaching and learning practices; and (4) investment of resources (e.g. staffing, time, space, materials and supplies, partnerships) that support exemplary school-based programs.

The project will use surveys, focus groups, and face-to-face interviews to collect data from 18 principals; classroom observations and a survey to collect data from 380 teachers, and a survey to collect data from 3700 students. These data collections, augmented by other intermittent research activities, will provide insights about extant programs in participating schools regarding effective school leadership, state-of-the art teaching and learning practices, and the impact on students' interest, motivation, and self-efficacy about STEM education. The primary outcome from this project will be a field-tested jointly refined STEM level of readiness rubric based on input from principals, teachers, and students with guidance from the project's advisory board and the Center for Research in Educational Policy at the University of Memphis. The rubric will be instrumental in informing district-level education stakeholders and university-partner decision-makers' choices about where and when to invest resources to further support the development of higher quality STEM programs and schools. It will also be useful in identifying ways to improve students' overall perceptions about future courses of study and careers and the development of professional development modules for teacher training. Beyond these key school district-level outcomes, results will be used to enhance teacher preparation efforts through further refinement of methods courses and the STEM Teacher Leadership Certificate Program at the University.

Developing Teachers as Computational Thinkers Through Supported Authentic Experiences in Computing Modeling and Simulation

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by NGSS to prepare middle school science teachers to implement rich computational thinking experiences within science classes.

Partner Organization(s): 
Award Number: 
1639069
Funding Period: 
Fri, 01/01/2016 to Sun, 06/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by the Next Generation Science Standards to prepare middle school science teachers to implement rich computational thinking (CT) experiences, such as the use, creation and analysis of computer models and simulations, within science classes.

The project, a partnership between the Santa Fe Institute and the Santa Fe Public School District, directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum. The PD program includes: an online PD network; workshops; webinars and conferences; practicum and facilitator support; and curricular and program guides. The overall approach to the project is design based implementation research (DBIR). Methods used for the implementation research includes: unobtrusive measures such as self-assessment sliders and web analytics; the knowledge and skills survey (KS-CT); interviews (teachers and the facilitators); analysis of teacher modified and created models; and observations of practicum and classroom implementations. Data collection and analysis in the implementation research serve two purposes: a) design refinement and b) case study development. The implementation research employs a mixed-method, nonequivalent group design with embedded case studies.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Systemic Transformation of Inquiry Learning Environments for STEM (STILE 2.0)

The project is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.

Lead Organization(s): 
Award Number: 
1621387
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project at The Center for Technology and School Change (CTSC) at Teachers College, Columbia University, is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. This project will explore the most effective features for preparing teachers to design and implement authentic STEM learning experiences in twelve high need elementary and middle urban schools across New York City and Yorkers. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.

Participants in this project will design and implement transdisciplinary STEM projects and learn to develop and support STEM learning environments for their schools. As part of this overall process, researchers will refine a situated professional development curriculum, including a suite of digital case studies that will assist schools. The project will: 1) build a vision for trans-disciplinary STEM schooling; 2) design and implement STEM learning experiences; and 3) take capacity-building steps to sustain STEM practices. A mixed method design approach will be used to explore both the implementation of the project and the effect of implementation on participants.

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Transforming Teaching Through Implementing Inquiry (T2I2)

This project explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases the educator's teaching competencies and how to effectively teach. Student achievement is measured by comparing state assessments in: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment.

Award Number: 
1156629
Funding Period: 
Mon, 08/01/2011 to Fri, 07/31/2015
Full Description: 

Transforming Teaching Through Implementing Inquiry (T2I2) is a full research and development project that explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development (PD) for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases this target audience's: 1) understanding of engineering design concepts and ability to effectively teach them 2) understanding of how to address student learning needs 3) ability to manage, monitor, and adjust the learning environment 4) use of self assessment to enhance teaching ability and 5) engagement in a community of practice. These issues are of particular interest because of the limited resources in place to prepare pre-service engineering and CTE teachers, as well as a lack of in-service PD.

The content for the PD is grounded in the materials and processes of two projects reviewed by the National Research Council's (NRC) report review committee: Technology Education: Learning by Design for Middle Schools" and "Engineering by Design for High Schools." By incorporating an object-oriented generic system design (learning objects), the cyberinfrastructure is set to be reusable, adaptable, and scalable. These learning objects allow for customization of the learning experience, whereby learning facilitators or learners themselves can configure the system based on their specific needs. Delivering learning objects in an online framework enables teachers to develop and grow in a network community.

A mixed methods approach is used to determine effects of professional development. Student achievement is measured by comparing each site's state assessments in the following areas: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment. Both formative and summative evaluation strategies inform the development and implementation of the project. As such, the project will advance theory, design, and practice in middle and high school engineering.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Ramping Up Accessibility in STEM: Inclusively Designed Simulations for Diverse Learners

This project brings together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503439
Funding Period: 
Wed, 07/15/2015 to Fri, 06/30/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will bring together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities. The Physics Education Technology (PhET) Interactive Simulations project (University of Colorado Boulder) will develop and research interactive science and math simulations used by teachers and students around the world. The Inclusive Design Research Centre (OCAD University, Toronto, Ontario) is an international leader in inclusively designed technology, with the goal of designing for the full range of human diversity including those with and without disabilities. Together, the project team will engage in an iterative design process to develop innovative solutions for making the highly interactive environment of an educational simulation simultaneously intuitive, accessible, and supportive of exploration and discovery practices in science. Development efforts will focus on three inclusive simulations and optimize the design and implementation of several inclusive simulation features, including keyboard navigation, auditory descriptions for screen readers, the use of non-speech sounds to provide feedback (sonification), and the ability to control the simulation with assistive technology (AT) devices. For each simulation, professional development materials for teachers, including classroom activities and user guides, will be developed to support teachers in effectively using the inclusively designed simulations in their classrooms. 

Through new research, this project will seek to understand: 1) how inclusive simulations can support students with disabilities to engage in science practices, 2) how students with and without disabilities utilize inclusive simulations for learning STEM content, and 3) how students can engage in collaborative learning between students with and without disabilities - with an inclusive simulation. Researchers will use individual interviews with diverse students to closely examine these questions. The resulting resources, models, and tools will provide exemplars and important building blocks for an inclusively designed interactive curriculum, educational games, and assessment tools. Resulting simulations, research findings, design guidelines, and exemplars will be disseminated through the project team and advisor partner networks, education resource websites, and educator professional organizations.

Pages

Subscribe to Technology