Technology

PBS NewsHour Student Reporting Labs StoryMaker: STEM-Integrated Student Journalism

In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. The project aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people.

Project Email: 
Award Number: 
1908515
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
Full Description: 

PBS NewsHour's Student Reporting Labs (SRL) is a youth journalism program that creates transformative educational experiences through video production and community engagement. The program aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people. In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. SRL StoryMaker:STEM will be a free, self-directed online curriculum delivery system designed to guide educators working with middle and high school-age students through videojournalism experiences that highlight and integrate STEM skills, concepts, issues, and potential solutions into the learning process. This program will also develop mentoring connections with 40 journalism professionals and STEM professionals to provide supports for participating teachers and students. The project will recruit and work with about 100 teachers and their students over the course of the project to inform, test, implement and provide feedback on the SRL StoryMaker:STEM platform and resources. The associated research will explore evidence-based strategies for structuring co-learning and mentorship connections for students and teachers with journalists and science content experts around SRL StoryMaker:STEM to best support student and teacher outcomes.

The four-year associated research study will contribute to understanding how teachers collaborate on teaching STEM across academic disciplines through a series of interviews, surveys, and site visits with the pilot teachers and their students using SRL StoryMaker:STEM. The analysis of the data will focus on identifying the benefits of developing a community of teachers who collaborate on teaching STEM across the academic discipline through journalism practice. Specifically, a combination of quantitative and qualitative methods will be used to examine the following research questions: What teacher affordances are necessary for using journalism practices to support STEM learning across academic disciplines? How do teacher perceptions of their school constraints influence their use of STEM-based learning activities? How do teachers from different disciplines teach numerical reasoning, communicating with data, and the other essential STEM thinking skills? How might an online support community be structured to encourage teacher-to-teacher scaffolding related to STEM content given variation in their pedagogical training? Meanwhile, front-end evaluation will identify barriers and opportunities specific to this project. Formative evaluation will focus on how each specific iteration is meeting teachers' needs and aspirations, and summative evaluation will examine teachers' STEM learning and teachers' perception of students' STEM outcomes.

Alternative video text
Alternative video text: 

Improving Evaluations of R&D in STEM Education

The primary goal of this set of workshops is to provide STEM education researchers with the framework, skills, and community they need to implement new developments in causal inference methods into their research.

Project Email: 
Lead Organization(s): 
Award Number: 
1937719
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

The primary goal of this set of workshops is to provide STEM education researchers with the framework, skills, and community they need to implement new developments in causal inference methods into their research. These methods will be immediately implementable in their current (or near future) studies and will result in stronger causal findings, providing higher-quality evidence regarding the potential of new innovations to improve STEM education broadly. Additionally, a secondary goal is to provide the graduate assistants at the workshop (students in statistics) with a strong foundation in the real-world problems facing researchers in STEM education today. By being immersed in this community, the goal is to improve their communication skills, while also providing them with opportunities to develop new methods that address problems facing the STEM education community today.

STEM education research and development studies often focus on the development and iterative refinement of interventions meant to increase STEM participation and skills. Since large-scale randomized experiments are not often possible, researchers typically use correlational methods instead to explore the effects of interventions. Over the past several years, however, statisticians have developed a broad array of methods for understanding causality that do not require these large-scale randomized trials. While these causal inference methods are now common in fields like medicine and education policy, they are much less commonly found in STEM education fields. The purpose of this set of workshops is to introduce STEM education researchers to these methods and how they relate to three research designs they already use: (1) matching on a single variable (e.g., age, gender), (2) pre-test post-test comparisons, and (3) lab experiments. In addition to introducing these new developments, broader discussions of confounding, validity types and trade-offs, design sensitivity, effect size reporting, and questionable research practices (e.g., p-hacking) will also be included.

Alternative video text
Alternative video text: 

Fusing Equity and Whole-School STEM Models: A Conference Proposal

This project will plan, implement, and evaluate the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level.

Project Email: 
Lead Organization(s): 
Award Number: 
1907751
Funding Period: 
Thu, 08/01/2019 to Fri, 07/31/2020
Project Evaluator: 
Full Description: 

Interest in whole-school STEM education models is rapidly expanding in the United States, but there is limited agreement on the essential features of effective STEM schools and a limited research base on effective practices. There are also concerns regarding equity issues associated with whole-school STEM models. This project will address these issues by planning, implementing, and evaluating the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level. The conference will include 25 invited participants who have expertise as researchers or practitioners in equity issues or whole-school STEM reform efforts. These participants will discuss how to: 1) Create a collective understanding among a community of stakeholders regarding the role of equity in whole-school STEM models, 2) Map, synthesize, and report the terrain of existing research around the role of equity in whole-school STEM and non-STEM models including both strengths and gaps in the research base, and 3) Identify central issues and questions that can guide future research in order to prioritize these topics and initiate productive collaborations among participants to pursue answers to critical questions. These discussions will result in two key outcomes: 1) A practitioner centered logic model that integrates equity into the design and implementation of STEM at the whole-school level, and 2) A research model that supports building an empirical understanding of the intersection between equity and whole-school STEM programs.

There are various models of STEM-centered schools, with the most significant difference across models being the enrollment criteria. This project will focus on Inclusive STEM Schools which have open enrollment and provide paths for all students to advanced learning or careers in STEM fields. Federal initiatives have promoted and supported expansion of these schools, but there is little research on the impacts of these schools, and even less research on the role of equity considerations on the design and implementation of these schools. This project will address the limited research base by focusing specifically on culturally relevant and culturally responsive programing for inclusive STEM schools and initiating a research agenda on the role of equity in designing inclusive STEM programs. The project will seek to identify effective practices, and document outcomes on diverse populations.

Alternative video text
Alternative video text: 

Human Variance and Assessment for Learning Implications for Diverse Learners of STEM: A National Conference

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests.

Lead Organization(s): 
Award Number: 
1939192
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The conference purpose is to stimulate a national conversation concerning the relationships between assessment, teaching and learning that include scholarly research and development of tests; members of city and state boards of education; officials from states and major school systems; policymakers; and representatives of teachers' associations and parents' associations. This conference aims to attract these important professionals has important co-sponsors like the Urban Institute. This national conference flows from the work of the Gordon Commission on the Future of Assessment for Education that addressed the advancement of achievement in STEM disciplines (PreK-12) for students who are underrepresented among high achieving students. This issue of advancement of underrepresented high achieving students has received little concentrated effort and a conference would help in providing greater understanding of this special concern, which includes a student in poverty in complexed family structures.

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests. The conference will stimulate national conversation and ultimately a market that demands educational assessments that inform and improve teaching and learning transactions. The conference will be organized around four conceptual and theoretical papers that focus on the knowledge base upon which six concurrent workshops will be based. The four papers are: (1) Human Diversity and Assessment; (2) The Limits of Test Bias and Its Corrections; (3) Towards an Assessment Science Capable of Informing and Improving Learning; and  (4) Assessment in the Service of Learning. The workshops will focus on models of pedagogical practice that show promise for informing and improving teaching and learning processes and their outcomes. These issues will be discussed by 11-15 expert presenters who understand student learning and the types of information gleaned from different types of assessments. The attention to URMs and their needs and contexts are prioritized in discussions surrounding measurement science and the integration of assessment. Several important issues that address understanding of student learning, and the relationship between the varieties of information concerning students that can be accessed through assessments are: (1) The importance of the broader and more productive use of educational testing to improve the learning of STEM subject matter and values; (2) Curriculum embedded assessment and the reduction in disparities in achievement by STEM learners from diverse social divisions; (3) Innovative procedures and programs for the use of data concerning learners and teaching and learning transactions in the teaching and learning of STEM with learners who are underrepresented among high achieving STEM learners.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Danish)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908632
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

STEM for All Collaboratory: Accelerating Dissemination and Fostering Collaborations for STEM Educational Research and Development

This project will capitalize on the STEM for All Video Showcase and extend its impact by creating a STEM for All Multiplex. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts.

Lead Organization(s): 
Award Number: 
1922641
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

The STEM for All Collaboratory will advance educational research and development through the creation and facilitation of two related and interactive platforms: the STEM for All Video Showcase, and the STEM for All Multiplex. The Video Showcase provides an annual, online, week-long, interactive event where hundreds of educational researchers and developers create, share, and discuss 3-minute videos of their federally funded work to improve Science, Mathematics, Engineering, Technology and Computer Science education. Several years of successful Video Showcases have contributed to a rich database of videos showcasing innovative approaches to STEM education. To capitalize on the growing resource and extend its impact, this project will create a STEM for All Multiplex, a unique contribution to STEM education. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts. The Multiplex will host interactive, monthly, thematic online events related to emerging research and practices to improve STEM and Computer Science education in formal and informal environments. Each thematic event will include selected video presentations, expert panels, resources, interactive discussions and a synthesis of lessons learned. All events will be accessible and open to the public. The project will continue to host and facilitate the annual Video Showcase event which has attracted over 70,000 people from over 180 countries over the course of a year. This effort will be guided by a collaboration with NSF resource centers, learning networks, and STEM professional organizations, and will advance the STEM research and education missions of the 11 collaborating organizations.

The Video Showcase and the Multiplex will foster increased dissemination of federally funded work and will effectively share NSF's investments aimed at improving STEM education. It will enable presenters to learn with and from each other, offering and receiving feedback, critique, and queries that will improve work in progress and to facilitate new collaborations for educational research. It will connect researchers with practitioners, enabling both groups to benefit from each other's knowledge and perspective. Further, it will connect seasoned investigators with aspiring investigators from diverse backgrounds, including those from Minority Serving Institutions. It will thereby enable new researchers to broaden their knowledge of currently funded efforts while also providing them with the opportunity to discuss resources, methodology and impact measures with the investigators. Hence, the project has the potential to broaden the future pool of investigators in STEM educational research. This work will further contribute to the STEM education field through its research on the ways that this multimedia environment can improve currently funded projects, catalyze new efforts and collaborations, build the capacity of emerging diverse leadership, and connect research and practice.

Strengthening STEM Teaching in Native American Serving Schools through Long-Term, Culturally Responsive Professional Development

This project will explore how a nationally implemented professional development model is applied in two distinct Indigenous communities, the impact the model has on teacher practice in Native-serving classrooms, and the model's capacity to promote the integration of culturally responsive approaches to STEM teaching.

Project Email: 
Lead Organization(s): 
Award Number: 
1908464
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Although there is a long-established body of knowledge about effective professional development for STEM teachers, very little of it has been applied and studied with teachers in Native American-serving school districts. This project will explore how a nationally implemented professional development model is applied in two distinct Indigenous communities, the impact the model has on teacher practice in Native-serving classrooms, and the model's capacity to promote the integration of culturally responsive approaches to STEM teaching. This project will substantially grow the data and knowledge available within this unique context, which is critical given the persistent gaps in educational achievement and STEM career participation among Indigenous people in the U.S. K-12 teachers will participate in an 8-month cohort designed to increase their STEM content knowledge and facilitate their efforts to develop academically rigorous, culturally responsive STEM instructional units for use in their classrooms. The project will add to our knowledge about the transferability of a nationally-implemented professional development model within two specific Indigenous contexts, and it will grow our knowledge about how STEM professional development impacts teacher practice. Finally, the project will provide concrete examples and knowledge about the ways culturally responsive approaches to STEM professional development, curriculum development, and teacher practice are taken up in two distinct Native-student-serving contexts.

This project includes the development and implementation of professional development that is long-term, teacher-driven, collaborative across grade levels and content areas, and facilitated by university faculty with STEM expertise. The research will follow a collective case study methodology in order to establish a robust and nuanced understanding of (1) how a national professional development model operates within two specific and distinct Indigenous contexts; (2) how a professional development model impacts teachers' STEM instructional practice in Native-serving schools; and (3) how teachers in Native-serving schools engage culturally responsive approaches to STEM curriculum development and STEM instructional practice. Data will include interviews and focus groups with participating teachers, university faculty, and other stakeholders, classroom observations and "Scoop Notebook" artifacts of teacher practice, and the teacher-developed STEM instructional units. Data will be iteratively coded with a combination of open and focused coding using a constant comparative method with a specific emphasis on identifying the culturally responsive elements present across the data sources. Individual and cross-case comparisons will be conducted to reveal broader themes that address the research questions. Results and products will be disseminated to researchers, practitioners, and community members through peer-reviewed publications, conference presentations, annual partnership meetings, and posting of the teacher developed instructional units to a web-based, freely accessible clearing house.

Developing and Validating Early Assessments of College Readiness: Differential Effects for Underrepresented Groups, Optimal Timing of Assessments, and STEM-Specific Indicators

This purpose of this project is to develop and validate a range of assessments with a focus on academic preparedness for higher education. The team will explore relevant qualities of assessments such as their differential predictive validity to ensure they are appropriate for underrepresented groups, the optimal grade level to begin assessing readiness, and measures that are most appropriate for predicting STEM-specific readiness.

Project Email: 
Award Number: 
1908630
Funding Period: 
Mon, 07/15/2019 to Wed, 06/30/2021
Project Evaluator: 
Full Description: 

One third of all college freshmen are academically unprepared for entry-level college coursework and require remedial course. That figure is much higher at many colleges. The problem is more acute in STEM disciplines, particularly among students from underrepresented ethnic groups and low socioeconomic status families. This purpose of this project is to develop and validate a range of assessments with a focus on academic preparedness for higher education. The team will explore relevant qualities of assessments such as their differential predictive validity to ensure they are appropriate for underrepresented groups, the optimal grade level to begin assessing readiness, and measures that are most appropriate for predicting STEM-specific readiness.

This project will use two recent and complementary large-scale, nationally representative federal databases: the High School Longitudinal Study of 2009 and the Education Longitudinal Study of 2002. Factor analysis will be used to develop composite variables of college readiness and multilevel regression will be used to develop predictive models on a range of college outcomes to test the predictive validity of composite and individual predictors. The models will be extended to conduct multiple group analyses to test for differential prediction for students from underrepresented groups. The project intends to promote 1) the use of a wider range of assessments of academic preparedness, 2) the use of measures that are more sensitive for assessing college readiness from underrepresented groups and among STEM majors, 3) earlier assessment using indicators and models with predictive validity and 4) progress monitoring of college readiness by providing a detailed example of how that can be developed and implemented. Findings will also raise student, parental, teacher, and other school personnel awareness of the range of factors relevant for preparing students for college.

Alternative video text
Alternative video text: 

Case Studies of a Suite of Next Generation Science Instructional, Assessment, and Professional Development Materials in Diverse Middle School Settings

This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.

Lead Organization(s): 
Award Number: 
1907944
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

New state science standards are ambitious and require important changes to instructional practices, accompanied by a coordinated system of curriculum, assessment, and professional development materials. This project addresses a gap between vision and implementation of such standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on the design of such materials using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations. Classes of urban students in two states will collect data on local insect species with the goal of understanding, sharing, and critiquing environmental management solutions. An integrated learning technology system, the Learning Navigator, draws on big data to organize student-gathered data, dialogue, lessons, an assessment information. The Learning Navigator will also amplify the teacher's role in guiding and fostering next generation science learning. This project advances the field through an in-depth exploration of the goals for the standards documents. The study begins to address questions about what works when, where, and for whom in the context of the Next Generation Science Standards.

The project uses a series of case studies to create, test, evaluate and refine the system of instructional, assessment and professional development materials as they are enacted in two distinct urban school settings. It is designed with 330 students and 22 teachers in culturally, racially and linguistically diverse, under-resourced schools in Pennsylvania and California. These schools are located in neighborhoods that are economically challenged and have students who demonstrate patterns of underperformance on state standardized tests. It will document the process of team co-construction of Next Generation Science-fostering instructional materials; develop assessment tasks for an instructional unit that are valid and reliable; and, track the patterns of use of the instructional and assessment materials by teachers. The study will also record if new misconceptions are revealed as students develop Next Generation Science knowledge,  comparing findings across two diverse school locations in two states. Data collection will include: (a) multiple types of data to establish validity and reliability of educational assessments, (b) the design, evaluation and use of a classroom observation protocol to gather information on both frequency and categorical degree of classroom practices that support the vision, and (c) consecutive years of ten individual classroom enactments through case studies analyzed through cross-case analyses. This should lead to stronger and better developed understandings about what constitutes strong Next Generation Science learning and the classroom conditions, instructional materials, assessments and teacher development that foster it.

Pages

Subscribe to Technology