Science

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Building Professional Capital in Elementary Science Teaching through a District-wide Networked Improvement Community Model

This project will focus on a networked improvement community (NIC) model of professional learning that shifts K-5 science instruction from traditional approaches to a three-dimensional design as outlined in the Next Generation Science Standards. The project will feature a multi-level model involving university educators and researchers and school district practitioners in an effort to co-defined problems of practice valuable to both parties.

Lead Organization(s): 
Award Number: 
1907471
Funding Period: 
Mon, 07/01/2019 to Thu, 06/30/2022
Full Description: 

This project will focus on a networked improvement community (NIC) model of professional learning that shifts K-5 science instruction from traditional approaches to a three-dimensional design as outlined in the Next Generation Science Standards. The need to make this shift stems from the school district's decision to address inequities in science as some schools offer minimal to no science instruction during the elementary years. The NIC model will draw on expertise from school personnel and university partners to ensure that students will have access to and benefit from authentic model-based inquiry daily in the early grades. This model embraces the challenges of scale and sustainability by targeting the design and substance of professional learning and its organization within the district, balancing integration with existing system infrastructure, and shifting the system based on theory-driven practices. To prepare teachers for this major change, professional development will shift from: (1) training on the use of kit-based curricular materials to professional learning grounded in NGSS-inspired sets of practices and tools; (2) working as individual practitioners to teaching as collaborative investigations; (3) using centralized efforts to distributed knowledge-building and leadership; (4) learning science as decontextualized facts to deep engagement with real-world phenomena; and (5) teaching lessons as prescribed by curriculum to a focus on responsive teaching and building on students' funds of knowledge. The NIC model will provide a pathway for integrating and implementing these shifts via a multilevel, knowledge-building, problem-solving system. This system will go beyond a single focus on improving students' understanding of science content to incorporating teaching practices that advances knowledge about student's written and spoken scientific language and use of explanations and arguments. Through the NIC model all K-5 elementary students in the district will benefit from a rigorous and equitable approach to science learning.

This project will feature a multi-level model involving university educators and researchers and school district practitioners in an effort to co-defined problems of practice valuable to both parties. A mixed methods research design will examine how the NIC model develops professional capital through changes in implementation over multiple iterations. These changes will be captured through short and long-term instruments. Regarding the shorter term, practical measures sensitive to change and directly tied to small manageable, short-term goals will provide quick responses to everyday real-time questions. These measures will help assess specific improvement goals using language relevant and meaningful to researchers and practitioners. For longer term goals, in-depth case studies, interviews, observations, pre-posttests, surveys, and questionnaires will collect data on several variables critical to documenting improvements at the teacher and student levels. Both sets of data will generate knowledge about ambitious and equitable science teaching practices with a focus on students' cultural and linguistic resources and experiences. Through such pathways, knowledge will be generated on teachers' and students' growth as active builders and collaborators in the development of improved learning and experiences. The outcomes will identify critical facets that support advances and sustainability that illuminate variations within the district to better understand what works, for whom, and under what conditions. the research findings will also be used to inform decision making about teaching science at the elementary grades and to further refine equity-based practices, resources, and tools for building on students' funds of knowledge vital to supporting, sustaining, and scaling educational outcomes for all students in the district and beyond.

Developing Learning Environments that Support Molecular-Level Sensemaking

This project will investigate how high school students can be supported in developing, organizing and using knowledge of atomic/molecular behavior to make sense of phenomena such as phase changes, atomic emmision spectra and dissolution. The project will study whether an innovative college level curriculum, "Chemistry, Life, the Universe and Everything" (CLUE) can be co-modified by teachers, chemists, and researchers to help students master these difficult concepts and connections.

Partner Organization(s): 
Award Number: 
2003680
Funding Period: 
Sat, 06/15/2019 to Wed, 05/31/2023
Full Description: 

This Early Stage Design and Development (Level II) project is aimed at understanding how learning environments should be designed to support high school students enrolled in an introductory chemistry course in making sense of phenomena in terms of atomic/molecular behavior. As students do not derive many intellectual resources useful for reasoning about the particulate-level from experience, sensemaking in chemistry relies heavily on knowledge cultivated in formal instructional settings. A significant body of research on college-level learning environments indicates that centering instruction around scaffolded progressions of core ideas help students develop, organize, and use their knowledge to explain and model phenomena. Preliminary results from a study conducted by the PI and co-PI show that adapting college-level, evidence-based conceptual progressions for use in high school has the potential to aid students in connecting molecular-level structure to measurable properties. 

This research program focuses on leveraging the practical knowledge of teacher co-developers who participated in preliminary studies to realize a Next-Generation Science Standards-aligned curricular framework supportive of 3-dimensional learning in chemistry. In designing learning environments supportive of molecular-level sensemaking, the research team will consider 1) when students are prepared to grapple with the inferences required to figure out causes for observable occurrences, and 2) how sensemaking opportunities should be structured to engage students in collaborative construction and critique of explanations and models of phenomena. Student ability to engage in sensemaking will be assessed via analysis of responses to carefully designed and validated three-dimensional assessments, and analysis of the discourse practices of student groups as they engage in construction and refinement of models and explanations. This program of research will also place substantial focus on characterizing how and why teacher co-developers modify curricular materials in order that supports for productive modifications might be embedded throughout teacher-facing resources. This project will provide evidence about how students should be supported in developing, organizing, and using knowledge of atomic/molecular behavior to make sense of phenomena. Concomitant focus on the design and analysis of learning environments for high school chemistry will enable data-driven refinement of materials, and support elucidation of generalizable design principles. The aim of this research is to develop and make available materials that constitute "tool kits" for a curricular activity system (including text, teacher guides, student guides, and formative and summative assessments). Three-dimensional assessment items designed and validated in the research will be made broadly available and could serve as benchmarks for the efficacy of high school chemistry curricula nationwide.

This project was previously funded under award #1906293.

Environmental Innovation Challenges: Teaching and Learning Science Practices in the Context of Complex Earth Systems

This project will engage teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.

Project Email: 
Lead Organization(s): 
Award Number: 
1908117
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Project Evaluator: 
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by engaging teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.

This early stage Design and Development study is guided by the hypothesis that competitive challenges supported by social media and crowdsourcing will engage a diverse array of students in sustained and meaningful scientific inquiry. Over a period of four years, the project will design and refine four Challenges that will engage approximately 1,000 students of ages 13-17. Project research is guided by three overarching questions related to the design of the Challenges, the influence of school contextual factors, and student learning and self-efficacy. The questions are: (1) How do features of the challenge environment support the work of teams, and the participation of students from communities historically underserved in STEM? (2) What structures within the school ecosystem support or raise obstacles to team work? And (3) Does participation in a Challenge result in the intended student outcomes. Intended outcomes include: a) Learning of basic concepts related to the science of the project focus; b) Engagement in learning disciplinary core ideas, cross-cutting concepts and science and engineering practices; c) Persistence in completing a Challenge; and d) self-efficacy in STEM. Students and their teachers will cross disciplinary boundaries as they choose concepts from chemistry, engineering, mathematics, biology, and social science to support their innovations.Teachers, students, staff members and advisors will comment and provide quidance to the teams on a range of issues through crowdsourcing. Design research will be used to examine how features of the Challenge environment supports the work of teachers and teams, and implementation research will focus on participant learning at the individual and team levels. The project will engage at least 25 teams of 3-4 students each, and researchers will track team activity during all phases of the Challenge process. A mixture of qualitative and quantitative analyses will be used to examine outcomes, and data for girls and others from underserved populations will be disaggregated for separate analyses.

Alternative video text
Alternative video text: 

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Scherr)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Lead Organization(s): 
Award Number: 
1907815
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Mason)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Partner Organization(s): 
Award Number: 
1907950
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Design Research on the Teaching and Learning of Conceptual Understanding in High School Chemistry Though the Use of Dynamic Visualizations of Physical and Chemical Changes

The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).

Lead Organization(s): 
Award Number: 
1908121
Funding Period: 
Sun, 09/01/2019 to Sat, 08/31/2024
Full Description: 

This is a late-stage design and development proposal in the teaching strand which addresses the teaching and learning of chemistry at the secondary level, grades 10-12. There is a critical need to transform chemistry teaching and learning from an emphasis on description of phenomena to deep understanding consistent with the Next Generation Science Standards (NGSS). The project will establish a sustained community of practice of teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms). With a focus on traditionally under-served groups including English Language Learners, the project will impact up to 80,000 high school chemistry students from a broad range of socioeconomic, geographic, and racial backgrounds.

This project will develop teachers' knowledge and skills to help their students build accurate molecular-level mental models to explain phenomena as opposed to the overemphasis on description with abstract symbolism and language. Three chemistry teacher cohorts (N = 64) will participate in intensive nstitutes to learn the research foundation and pedagogical moves for the VisChem approach. The approach uses carefully produced dynamic visualizations with teaching strategies informed by a cognitive learning model. Key to VisChem is communication of internal visualizations using storyboards (drawings with explanation) of chemical and physical changes. The project will use an iterative research design examining teacher and student learning in the Institutes and how they implement the learning in classrooms. Data collected will include teachers' storyboards, classroom videos, and pre/post student assessments. Evaluation will provide iterative feedback to incrementally improve the institutes during the project.

CAREER: Expanding Latinxs' Opportunities to Develop Complex Thinking in Secondary Science Classrooms through a Research-Practice Partnership

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.

Award Number: 
1846227
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. Science educators generally agree that science classrooms should provide opportunities for students to advance their thinking by engaging in critical conversations with each other as capable sense-makers. Despite decades of reform efforts and the use of experiential activities in science instruction, research indicates that classroom learning for students remains largely procedural, undemanding, and disconnected from the development of substantive scientific ideas. Furthermore, access to high-quality science instruction that promotes such complex thinking is scarce for students with diverse cultural and linguistic backgrounds. The project goals will be: (1) To design a year-long teacher professional development program; and (2) To study the extent to which the professional development model improves teachers' capacity to plan and implement inclusive science curricula.

This study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners. The work will build on a previous similar activity with one local high school; plans are to expand the existing study to an entire school district over five years. The proposed work will be conducted in three phases. During Phase I, the study will develop a conceptual framework focused on inclusive science curricula, and implement the new teacher professional development program in 3 high schools with 15 science teachers. Phase II will expand to 6 middle schools in the school district with 24 teachers aimed at creating a continuous and sustainable research-practice partnership approach at the district. Phase III will focus on data analysis, assessment of partnership activities, dissemination, and planning a research agenda for the immediate future. The study will address three research questions: (1) Whether and to what extent does participating teachers' capacity of planning and implementing the curriculum improve over time; (2) How and why do teachers show differential progress individually and collectively?; and (3) What opportunities and constraints within schools and the school district shape teachers' development of their capacity to design and implement curricula? To address the research questions, the project will gather information about the quality of planned and implemented curriculum using both qualitative and quantitative data. Main project's outcomes will be: (1) a framework that guides teachers' engagement in planning and implementing inclusive science curricula; and (2) increased knowledge base on teacher learning. An advisory board will oversee the work in progress. An external evaluator will provide formative and summative feedback.

CAREER: Bridging the Digital Accessibility Gap in STEM Using Multisensory Haptic Platforms

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound for students with visual impairments.

Lead Organization(s): 
Award Number: 
1845490
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

Consider learning visual subjects such as math, engineering, or science without being able to see. Suddenly, the graphs, charts, and diagrams that provide a quick way to gather information are no longer effective. This is a challenge that students with visual impairments face in classrooms today as educational materials are most often presented electronically. The current way that individuals with visual impairments "read" graphics is through touch, feeling raised dots and patterns on paper that represent images. Creating these touch-based graphics requires extensive time and resources, and the output provides a static, hard-copy image. Lack of access to graphics in STEM subjects is one of the most pressing challenges currently facing individuals with visual impairments. This is a concern given the low representation of students with these disabilities in STEM fields and professions.

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound. This research builds on prior research focused on representing the building blocks of graphics (points, lines, and shapes) nonvisually. In this project, the investigator will determine how to represent more challenging graphics such as charts, plots, and diagrams, nonvisually. The project will then explore the role of touch feedback in interactive simulations, which have moving elements that change with user input, making nonvisual access challenging. Finally, the projects extends the research to students with other disabilities, toward understanding the benefits and changes necessary for touch technologies to have broad impact. The project involves group and single-subject designs with approximately 65 students with visual impairments and focuses on the following outcomes of interest: students' graph literacy, percent correct on task assessments, time of exploration, response time, number of revisits to particular areas of the graphic, and number of switches between layers. Working closely with individuals with disabilities and their teachers, this work seeks to bridge the current graphical accessibility gap in STEM and raise awareness of universal design in technology use and development.

CAREER: Building on Diverse Students' Funds of Knowledge to Promote Scientific Discourse and Strengthen Connections to Science Learning in Urban Classrooms

This project will aim to investigate how to increase equitable and active participation of diverse students' science learning in middle schools. The central premise of this study will be that building upon and integrating diverse students' funds of knowledge into their learning opportunities would contribute to create equitable access to effective participation.

Award Number: 
1845048
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

Framed around existing inequities in science education, particularly within underserved student populations, the project will aim to investigate how to increase equitable and active participation of diverse students' science learning in middle schools. The central premise of this study will be that building upon and integrating diverse students' funds of knowledge into their learning opportunities would contribute to create equitable access to effective participation. Thus, the study will promote "authentic scientific discourse" as a critical feature of students' participation in science practices. In the context of this work, scientific discourse will refer to the spoken and written words, and gestures of students and teachers as they interact in science classrooms. This, in turn, would promote students' science learning at higher levels defined in the Next Generation Science Standards.

To achieve its goal of supporting authentic scientific discourse in diverse middle school classrooms, the work will address three research questions. (1) What funds of knowledge do students bring to bear, and how can these be productively integrated to support participation in authentic scientific discourse? (2) What are the ways in which students connect cognitively, motivationally, and socially to science learning when participating in authentic scientific discourse within urban classrooms? (3) What progress do students make in key aspects of scientific discourse and their science learning? The study will be conducted across approximately 15 middle schools and will employ a mixed-methods approach with a sample of teachers (n= 18) and students (n= 450). The work will be organized in three phases. Phase 1 will employ mixed methods, longitudinal approach to describe the complex interactions between students' funds of knowledge, disciplinary content and practices of authentic scientific discourse, and connections to science learning. Phase 2 will utilize design-based research cycles with teachers to apply and develop science instructional materials focused on improving opportunities for authentic scientific discourse by integrating students' funds of knowledge in urban classrooms using data from demographics, classroom videos, post-observation student-focus-group interviews, surveys, and science assessments. Phase 3 will focus on dissemination of research and educational findings. The main outcomes of this effort will include scholarly publications, an authentic scientific discourse framework, and instructional materials, such as lessons, videos, and student work for educators. An advisory board will provide both formative and summative evaluation feedback.

Pages

Subscribe to Science