Projects

10/01/2023

This project examines how Latine, bilingual teachers' dispositions to teach science and engineering to bilingual learners change as they enter the teaching profession. Specifically, it explores bilingual teachers' transition from a period of strong social support to one of scarce social support, i.e., from being Bilingual Teacher Candidates to Novice Bilingual Teachers (NBTs) as they plan and teach bilingual science and engineering lessons.

09/15/2023

The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.

09/15/2023

This project contributes to advancing knowledge on STEM education focusing on societal challenges by harnessing the convergence of STEM subjects, including data science and computer science, to empower a minoritized student groupmultilingual middle-school learners.

09/15/2023

Online STEM credit courses have become attractive to school leaders as a way to support students who fail STEM courses in face-to-face school year settings. However, there is little research about the processes involved in how schools make decisions regarding student credit recovery. The available research focuses solely on student results and is not definitive enough to support important policy decisions at the district level. This research brings redress to this policy dilemma.

09/15/2023

The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.

09/15/2023

The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.

09/15/2023

This RAPID project responds to the Buffalo blizzard of 2022 (Buffalo, NY) by developing, with and for the community, a science education curriculum framework focused on disaster justice and resilience. This project will document the science education human and social impact of the blizzard by capturing the experiences, reflections, and needs of science teachers, Black and Brown community leaders, and families who were directly affected.

09/15/2023

This project investigates the STEM teacher pipeline and examine qualifications, from teacher candidates who express interest in teaching STEM through to the eventual career paths of teachers in the workforce. In doing so, the project examines how the supply of STEM teachers has changed over time, whether the supply is adequate in meeting the needs of a changing nation, the qualifications and credentials of STEM teachers, and the implications of the STEM teacher career paths for equity and serving high needs contexts and students.

09/01/2023

This exploratory study aims to design, implement, and test climate science and history professional learning materials and experiences for high school teachers. By leveraging existing science and history/social science materials, the program will develop curricular planning tools and lessons to help teachers integrate climate literacy into their instructional units. The goal is to provide students with the knowledge to understand and respond to the social and environmental issues associated with the climate crisis.

09/01/2023

This research synthesis study reviews the effects of professional learning interventions and will advance STEM educators' understanding of the critically important relationships among teacher professional learning (PL), teacher knowledge and practice, and average student effects. Understanding these relationships will allow the field to design better PL experiences for teachers that truly benefit student learning.

09/01/2023

This project will develop and iteratively refine a practical framework and a suite of teacher education materials that support early career teachers—from preservice teacher education through their third year of classroom teaching—in teaching that recognizes and nurtures the scientific knowledge and practices of children and supports meaningful participation of historically marginalized children in science.

09/01/2023

This project seeks to better understand how teachers' capacity and willingness to customize instructional approaches to meet standards and the needs of diverse student populations develops through initial practice and successive enactments of curriculum materials. This work will address current gaps in the literature and contribute to an overall understanding of how teachers develop the capacity to use curricula in ways that advance the goal of equitable science instruction.

09/01/2023

Early childhood educators (ECEs) understand that effective science teaching and learning requires content knowledge related to science concepts and practices and pedagogical knowledge. However, ECEs, especially in rural communities, express a lack of science content knowledge and confidence in incorporating science-related conversations in their early care and education settings, and they believe this might be a result of limited professional training relevant to science content. This project aims to strengthen key capabilities in ECEs, including the ability to (1) build science content knowledge and confidence in guiding young children's scientific investigation, (2) closely observe children's interactions with science materials, and (3) use those observations in the reflection, planning, and practice of science teaching.

08/01/2023

This project brings together education researchers, high school science teachers, research scientists, and community-based organizations as co-design teams to modify science curriculum materials to be justice- and community-oriented. Building on existing partnerships between education researchers and 11 science teachers in two districts in Illinois, project teams will engage in cycles of curriculum analysis and adaptation over the course of 3 years. These professional learning cycles will develop pedagogically relevant content expertise, such as deepened understanding of locally relevant science phenomena, as well as infrastructure for community-engaged science instruction.

08/01/2023

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciencesthe relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

08/01/2023

There have been prominent and widespread calls for high school science students to work with data in more complex ways that better align with and support the work of professional scientists and engineers. However, high school students' analysis and interpretation of scientific data is often limited in scope, complexity, and authentic purpose. This project aims to support and advance students' work with ecological data in high school biology classrooms by embracing a new approach: Bayesian data analysis methods. Such methods involve expressing initial ideas or beliefs and updating them quantitatively with data that students access or record. This project will empower 20 high school teachers and their approximately 1,200 students to make sense of data within and beyond classroom contexts. It also will involve sharing research findings, an educational technology tool for Bayesian data analysis, and curricular resources in open and accessible ways.

08/01/2023

This synthesis study includes a comprehensive systematic review and meta-analysis of research published since 2001 evaluating the impact of family engagement interventions on student STEM outcomes. The goal of this project is to (a) determine the effectiveness of family engagement interventions on STEM outcomes, (b) identify practices/components within interventions that are most effective for promoting STEM outcomes, and (c) reveal the extent to which the effects of family engagement interventions vary as a function of study quality and/or certain child, family, and community characteristics.

08/01/2023

A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.

08/01/2023

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciencesthe relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

08/01/2023

This project builds capacity for middle school teachers to enact and adapt integrated STEM curriculum units with their students. The units will focus on biomimicryexamining structures and functions found in nature and applying these to solve human problems, which combines science, engineering, and technology. The project enables teachers to design activities that are personally authentic to their students by supporting teachers to examine their students' assets, needs, and interests and center these during unit design.

08/01/2023

A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.

07/15/2023

Today’s schools are experiencing increasing cultural and linguistic diversity and facing the challenge of creating meaningful connections between school science and student lived experiences outside of school. Middle school is a critical time to provide fundamental knowledge and encourage interest in STEM careers. In order to best impact learners during this critical period, science teachers need improved models to support the development and delivery of relevant curriculum materials to better serve all students in their classrooms. Highly supported design teams consisting of researchers, teachers, and both school and district science specialists will co-adapt existing district-generated science units to integrate socially and culturally relevant science practices and draw on students' diverse cultural and language practices as strengths.

07/15/2023

The project aims to develop and research Intelligent Science Stations, a new genre of interactive science experiences. The Intelligent Science Stations will provide students in kindergarten to 4th grade with hands-on science experiences, augmented by an intelligent agent that offers feedback based on artificial intelligence computer vision. This innovative approach offers evidence-based, personalized support and feedback to children, while also assisting teachers in integrating more inquiry-based science learning into their classrooms. By modeling behaviors like asking questions, making predictions, and explaining scientific phenomena, the interactive AI system helps teachers enhance their classroom experiences.

07/01/2023

One crucial predictor of success in STEM disciplines is spatial reasoning ability, which involves mentally manipulating and representing objects in space. However, STEM courses often neglect the purposeful development of spatial reasoning skills, and limited knowledge exists on effective training methods. This project aims to address this gap by: 1) identifying neural and cognitive processes associated with successful mental rotation, a fundamental aspect of spatial reasoning; 2) assessing the responsiveness of these processes to training; and 3) measuring the transfer of training effects to real-world STEM problems, specifically focusing on introductory chemistry.

07/01/2023

This project will provide rural STEM middle school teachers and career counselors professional development and the support needed to collaborate with each other and local community assets in designing, integrating, and implementing effective STEM content and career development activities. Local teams will co-develop project-based learning units that incorporate a place-based education perspective involving STEM assets, careers, and stakeholders from the local communities for middle school rural youth that intentionally infuse STEM careers in their area with STEM content.