Astronomy

An Integrated Approach to Early Elementary Earth and Space Science

This project will study if, how, and under what circumstances an integration of literacy strategies, hands-on inquiry-based investigations, and planetarium experiences supports the development of science practices (noticing, recognizing change, making predictions, and constructing explanations) in early elementary level students. The project will generate knowledge about how astronomy-focused storybooks, hands-on investigations, and planetarium experiences can be integrated to develop age-appropriate science practices in very young children.

Award Number: 
1813189
Funding Period: 
Sat, 09/01/2018 to Mon, 08/31/2020
Full Description: 

State science standards increasingly emphasize the importance of engaging K-12 students directly in natural phenomena and providing opportunities to construct explanations grounded in evidence. Moreover, these state science standards introduce earth and space science content in the early elementary grades. This creates a critical need for new pedagogies, materials, and resources for science teachers in all grades, but the need is particularly urgent in grades K-3 where teachers have had little preparation to teach science, let alone astronomy. There is also growing consensus that when learning opportunities in formal and informal settings are closely aligned, children's science literacy is developed in ways greater than either setting can achieve alone. The investigators will study if, how, and under what circumstances an integration of literacy strategies, hands-on inquiry-based investigations, and planetarium experiences supports the development of science practices (noticing, recognizing change, making predictions, and constructing explanations) in early elementary level students. This project will generate knowledge about how astronomy-focused storybooks, hands-on investigations, and planetarium experiences can be integrated to develop age-appropriate science practices in very young children (noticing, recognizing change, making predictions, and constructing explanations).

Emergent research on the development of children's science thinking indicates that when young children are engaged with science-focused storybooks and activities that each highlight the same phenomenon, children notice and gather evidence, make predictions and claims based on evidence, and provide explanations grounded in the experiences provided to them. This project has two phases. In Phase 1, first and third grade teachers will be recruited. They will help identify specific learner needs as these relate to the earth and space science standards in their grade band, assist in the development and pilot testing of a prototype instructional sequence and supporting activities taking place within their classrooms and at a local planetarium. In Phase 2, the revised learning sequence and research protocol will be implemented with the same teachers and a new cohort of children. The mixed method research design includes video observations, teacher interviews, and teacher and student surveys. Data analysis will focus on science practices, connections across contexts (e.g., school and planetarium), and instructional adaptations. The project involves a research-practice collaboration between the Astronomical Society of the Pacific, Rockman & Associates, the Lawrence Hall of Science at the University of California, Berkeley, and West Chester University.

The Spectrum Laboratory: Towards Authentic Inquiry for All

This project proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students.

Award Number: 
1814077
Funding Period: 
Tue, 05/01/2018 to Fri, 04/30/2021
Full Description: 

This project addresses physics, astronomy, and chemistry education at the high-school level. Spectroscopy is the single most important diagnostic tool in the sciences, and is required for inquiry at the frontiers of science across many disciplines, yet is unavailable to most classrooms. The Smithsonian Astrophysical Observatory proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students. The online learning resource and associated materials are purposefully being developed and tested with a demographically diverse set of schools. The project will determine how the design of a spectroscopy workspace can help students to use spectra while gaining fluency with a range of important science practices. The project's significance and importance is to greatly increase the opportunities for high school students to engage in authentic inquiry. Being able to evaluate and interpret real-world data is a hallmark of data literacy that is developed with Spectrum Lab. Project will potentially benefit the field through advances with respect to education and diversity, and benefit society by equipping high school students with the perceptual and cognitive factors that promote students' reasoning about spectra.

The Spectrum Lab's initial design applies research-based principles recommended for educational interfaces that engage students with graphical data advancing knowledge from prior research into understanding of how students make sense of spectroscopic data and its graphical representations. The project will be developed in collaboration with partner teachers in up to eight high school classrooms, representing a diverse population of learners, and then tested with a national group of 20 teachers with 600 to 800 students. A mix of quantitative and qualitative measures, including pre/post surveys and assessments, analysis of student project work, classroom video, and teacher surveys, will help address researcher's questions about students' experiences with the Spectrum Lab. The data to be gathered will be used to iteratively improve the design of the laboratory to aid students understand the source of these authentic data coming from spectroscopy to address real-world science questions of interest and importance to them. The Spectrum Lab will enable students to engage in a broad range of inquiry projects that were previously inaccessible, including projects near the frontiers of science. The students will become involved in their authentic inquiry projects, where each activity engages them in key science practices, including generating model spectrum plots to make predictions, assessing and interpreting data, and reasoning from evidence (and models) in support of a claim. The students will be using graphs of well-documented experiments and in physics, more challenging graphs of spectra of less familiar wavelength axis. The students in chemistry will learn how to relate the bright lines observed in an atom's spectrum to energy levels of the atom.  There will be studies that track students' eye movements show that students associate the peaks or valleys of a spectrum with individual atoms in a molecule, rather than with the overall properties of the molecule. The resources developed by the project will be freely available online for teachers and researchers. The Spectrum Lab is an advance in education technology that uses modern tools for enabling interactive data visualization. Its features enable students to integrate and apply the most important elements of science practice, such as the ability to draw evidence-based conclusions, as well as the ability to gather, evaluate and interpret data, intended to help students' science practice more closely resemble how research is done. The Spectrum Lab will modernize a critical part of high-school science classrooms, help teachers meet the expectations of the Next Generation Science Standards, and will better prepare students for college work.

Engaging Students in Scientific Practices: Evaluating Evidence and Explanation in Secondary Earth and Space Science

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events.

Lead Organization(s): 
Award Number: 
1721041
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will examine alternative explanations for natural phenomena associated with extreme weather events, freshwater resource availability, and related topics in learning how to evaluate scientifically valid lines of evidence and explanation. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events. It is expected that engagement in these activities will help students gain proficiency in model-based reasoning, critical thinking, planning and analyzing scientifically valid investigations, constructing plausible explanations, engaging in collaborative argumentation, and critically evaluating scientific information.

This 4-year Design and Development project will examine use of Model-Evidence Link (MEL) diagrams that are intended to help students cognitively construct mental scaffolds that assist their engagement in the practices of critical evaluation, plausibility appraisal, and knowledge construction related to science topics that are considered by some as controversial. Prior research has demonstrated the potential educational outcomes of using MEL diagrams, but this project will extend the previous work by examining an approach where students construct their own MEL diagrams (build-a-MELs, or baMELs). The project will examine the use of both pre-constructed MELs and baMELs for effectiveness in promoting student engagement in scientific reasoning and practices. The project will employ design-based research methodologies in pursuing answers to three research questions: (1) Do baMEL activities tested in multiple high school classroom settings promote critical evaluation, plausibility reappraisal, and  scientifically accurate knowledge construction about controversial Earth and space science topics? (2) How do these additional baMELs differ from pre-constructed MELs in promoting critical evaluation, plausibility reappraisal, and knowledge construction? And (3) To what extent does repeated use of both pre-constructed MELs and baMELs result in student engagement of scientific practices (i.e., asking critical questions, using model-based reasoning, planning and analyzing scientifically valid investigations, constructing plausible explanations, engaging in collaborative argumentation, and critically evaluating scientific information)? The project will engage high school students taking Earth and space classes in selected schools of Georgia, New Jersey, and within Philadelphia. Teacher professional development opportunities associated with the project will include summer institutes, classroom supports, and mentoring sessions.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hazari)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1721021
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Lock)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Lead Organization(s): 
Award Number: 
1720917
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hodapp)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Lead Organization(s): 
Award Number: 
1720810
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Thinking Spatially about the Universe: A Physical and Virtual Laboratory for Middle School Science (Collaborative Research: Sadler)

This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.

Partner Organization(s): 
Award Number: 
1502798
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena (moon phases and eclipses; planetary systems around stars other than the Sun; and celestial motions within the broader universe) in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers. The research program will determine which elements in the labs best promote both spatial skills and understanding of core ideas in astronomy; and how then to optimize interactive dynamic visualizations toward these ends. Virtual models of the sky and universe will be created using WorldWide Telescope, a free visualization tool that runs on desktop computers, tablets, and mobile devices. The ThinkSpace lab materials will be available at no cost on popular curriculum-sharing sites, including PBS Learning Media and BetterLesson.

The ThinkSpace team will address two main research questions: 1) How can spatial tasks that blend physical and virtual models be embedded into a STEM curriculum in ways that lead to significant improvements in spatial thinking? and 2) How can practitioners optimize design of interactive, dynamic visualizations for teaching spatially complex concepts? The first year of the study will examine two of the lab units with four teachers and about 320 students. The second year of the study will be similar. The third year of the study will test all three lab units in 10 classrooms. Over this study, each week-long ThinkSpace Lab will be formatively tested, using pre/post written assessments of astronomy content and spatial thinking; pre/post interviews with students; and in-class video of students using the lab activities. Scaffolded learning designs will support students in making connections between different spatial views of the phenomena, and will guide them to construct explanations and argue from evidence about how various phenomena (e.g. moon phases) arise in the real Universe, as Next Generation Science Standards demand. The impact of the ThinkSpace labs will be felt far beyond astronomy because the learning models being tested can transfer to other fields where spatial models are critical, and findings on optimization of dynamic visualizations can help to inform instructional design in the age of online learning. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Thinking Spatially about the Universe: A Physical and Virtual Laboratory for Middle School Science (Collaborative Research: Goodman)

This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503395
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena (moon phases and eclipses; planetary systems around stars other than the Sun; and celestial motions within the broader universe) in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers. The research program will determine which elements in the labs best promote both spatial skills and understanding of core ideas in astronomy; and how then to optimize interactive dynamic visualizations toward these ends. Virtual models of the sky and universe will be created using WorldWide Telescope, a free visualization tool that runs on desktop computers, tablets, and mobile devices. The ThinkSpace lab materials will be available at no cost on popular curriculum-sharing sites, including PBS Learning Media and BetterLesson.

The ThinkSpace team will address two main research questions: 1) How can spatial tasks that blend physical and virtual models be embedded into a STEM curriculum in ways that lead to significant improvements in spatial thinking? and 2) How can practitioners optimize design of interactive, dynamic visualizations for teaching spatially complex concepts? The first year of the study will examine two of the lab units with four teachers and about 320 students. The second year of the study will be similar. The third year of the study will test all three lab units in 10 classrooms. Over this study, each week-long ThinkSpace Lab will be formatively tested, using pre/post written assessments of astronomy content and spatial thinking; pre/post interviews with students; and in-class video of students using the lab activities. Scaffolded learning designs will support students in making connections between different spatial views of the phenomena, and will guide them to construct explanations and argue from evidence about how various phenomena (e.g. moon phases) arise in the real Universe, as Next Generation Science Standards demand. The impact of the ThinkSpace labs will be felt far beyond astronomy because the learning models being tested can transfer to other fields where spatial models are critical, and findings on optimization of dynamic visualizations can help to inform instructional design in the age of online learning. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

Pages

Subscribe to Astronomy