Instructional Practices

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Matuk)

This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.

Lead Organization(s): 
Award Number: 
1908557
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Vacca)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Lead Organization(s): 
Award Number: 
1908142
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Silander)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Award Number: 
1908030
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Improving Grades 6-8 Students' Mathematics Achievement in Modeling and Problem Solving through Effective Sequencing of Instructional Practices

This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.

Project Email: 
Lead Organization(s): 
Award Number: 
1907840
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The Researching Order of Teaching project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The first strategy, Explicit Attention to Concepts (EAC), is a set of practices that draw students' attention specifically to mathematical concepts in ways that extend beyond memorization, procedures, or application of skills. This strategy may include teachers asking students to connect multiple mathematical representations, compare solution strategies, discuss mathematical reasoning underlying procedures, or to identify a main mathematical idea in a lesson and how it fits into the broader mathematical landscape. The second strategy, Student Opportunities to Struggle (SOS), entails providing students with time and space to make sense of graspable content, overcoming confusion points, stimulating personal sense-making, building perseverance, and promoting openness to challenge. This strategy may include teachers assigning problems with multiple solution strategies, asking students to look for patterns and make conjectures, encouraging and promoting discourse around confusing or challenging ideas, and asking students for extended mathematical responses. This project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning. This study builds on previous work that had identified an interaction between the EAC and SOS instructional strategies, and associated teacher reporting of stronger use of the practices with higher student mathematics achievement.

The project will have four key design features. First, the project will adopt and extend the research-based EAC/SOS conceptual framework, and explicitly responds to the call for further research on the interactions. Second, the project will focus on the mathematical areas of modeling and problem solving, two complex and critical competencies for all students in the middle grades. Third, the project will position teachers as collaborators in the research with needed expertise. Finally, the project will make use of research methods from crossover clinical trials to implementation in classrooms. The project aims to identify the affordances and constraints of the EAC/SOS framework in the design and development of instructional practices, to identify student- and teacher-level factors associated with changes in modeling and problem solving outcomes, to analyze teachers' implementations EAC and SOS in teaching modeling and problem solving and to associate those implementation factors with student achievement changes, and to determine whether the ordering of these two strategies correlates with differences in achievement. The project will collect classroom observation data and make use of existing tools to obtain reliable and valid ratings of the EAC and SOS strategies in action.The design of the study features a randomized 2 x 2 cluster crossover trial with a sample of teachers for 80% power. The project builds on existing state infrastructure and relationships with a wide array of school districts in the context of professional development, and aims to create a formal Teacher-Researcher Alliance for Investigating Learning as a part of the project work.

Developing Organizational Capacity to Improve K-8 Mathematics Teaching and Learning

This project will develop and test a leadership model to improve K-8 mathematics teaching and learning by involving stakeholders across the K-8 spectrum. The project will support teachers, teacher leaders, and administrators in collectively identifying and addressing problems of practice in the teaching and learning of mathematics, and in turn develop plans to improve school and district organizational capacities to support stronger mathematics teaching.

Award Number: 
1907681
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

The Developing Organizational Capacity to Improve K-8 Mathematics Teaching and Learning is a 4-year implementation and improvement project. The project will develop and test a leadership model to improve K-8 mathematics teaching and learning by involving stakeholders across the K-8 spectrum. The project will support teachers, teacher leaders, and administrators in collectively identifying and addressing problems of practice in the teaching and learning of mathematics, and in turn develop plans to improve school and district organizational capacities to support stronger mathematics teaching. At the heart of the project is the Elementary Mathematics Leadership (EML) model, which is designed to improve stakeholder understandings of effective math teaching practices. The EML model involves collaboratively identifying classroom-based problems of practice with school and district personnel, designing and implementing professional development aligned with the problems of practice, and iterating those cycles of development, implementation, and revision to assess the model's effectiveness.

The EML model operates at the teacher, school, and district level using a design-based implementation research approach. At the district level, leadership teams in conjunction with researchers will identify problems of practice for which work on those problems will lead to a more coherent mathematics instruction in the district. Following this, professional development and coaching at the teacher level will be designed and implemented to target the problem of practice, with a focus on big ideas within the Common Core State Standards for Mathematics. This phase of the model also includes professional development aimed at school leaders and district administrators to strengthen organizational capacity to support and lead change related to the problem of practice. The final phase of the model calls on researchers, district, and school personnel to engage in an annual redesign of the intervention, making use of data gathered during the school year and evidence about what is happening in classrooms. This design acknowledges the broader policy context in which schools and districts operate as they work towards instructional change. To evaluate the effectiveness of the overall EML model, the project will collect a wide variety of data, including student achievement outcomes using standardized tests; assessments of teachers' mathematical knowledge, instructional practices, and efficacy measures; and measures of leader, administrator, and organizational capacities to support high-quality mathematics instruction. Four districts will be recruited to participate, enacting the model in pairs with a staggered start for one pair of districts to be able to measure treatment effects, using a variation of a switching replications design. Classroom practice and teacher outcomes will be assessed using a variety of MKT assessments, the Mathematical Quality of Instruction (MQI), and the Instructional Quality Assessment (IQA). School level outcomes will be collected via a leadership assessment and interview data, and district level outcomes will be assessed through the use of interview and documentary data. Analysis will include a statistical analysis of the EML model using hierarchical linear modeling, MANOVA/ANOVA, and regression as appropriate at the level of students and teachers, and qualitative analysis and descriptive statistics will be used at the school and district level due to small sample size.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Scherr)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Lead Organization(s): 
Award Number: 
1907815
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Mason)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Partner Organization(s): 
Award Number: 
1907950
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

CAREER: Expanding Latinxs' Opportunities to Develop Complex Thinking in Secondary Science Classrooms through a Research-Practice Partnership

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.

Award Number: 
1846227
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. Science educators generally agree that science classrooms should provide opportunities for students to advance their thinking by engaging in critical conversations with each other as capable sense-makers. Despite decades of reform efforts and the use of experiential activities in science instruction, research indicates that classroom learning for students remains largely procedural, undemanding, and disconnected from the development of substantive scientific ideas. Furthermore, access to high-quality science instruction that promotes such complex thinking is scarce for students with diverse cultural and linguistic backgrounds. The project goals will be: (1) To design a year-long teacher professional development program; and (2) To study the extent to which the professional development model improves teachers' capacity to plan and implement inclusive science curricula.

This study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners. The work will build on a previous similar activity with one local high school; plans are to expand the existing study to an entire school district over five years. The proposed work will be conducted in three phases. During Phase I, the study will develop a conceptual framework focused on inclusive science curricula, and implement the new teacher professional development program in 3 high schools with 15 science teachers. Phase II will expand to 6 middle schools in the school district with 24 teachers aimed at creating a continuous and sustainable research-practice partnership approach at the district. Phase III will focus on data analysis, assessment of partnership activities, dissemination, and planning a research agenda for the immediate future. The study will address three research questions: (1) Whether and to what extent does participating teachers' capacity of planning and implementing the curriculum improve over time; (2) How and why do teachers show differential progress individually and collectively?; and (3) What opportunities and constraints within schools and the school district shape teachers' development of their capacity to design and implement curricula? To address the research questions, the project will gather information about the quality of planned and implemented curriculum using both qualitative and quantitative data. Main project's outcomes will be: (1) a framework that guides teachers' engagement in planning and implementing inclusive science curricula; and (2) increased knowledge base on teacher learning. An advisory board will oversee the work in progress. An external evaluator will provide formative and summative feedback.

CAREER: Cultivating Teachers' Epistemic Empathy to Promote Responsive Teaching

This CAREER award aims to study the construct of "epistemic empathy" and examine how it can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom. In the context of this project, epistemic empathy is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity aimed at the construction, communication, and critique of knowledge.

Lead Organization(s): 
Award Number: 
1844453
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

When students perceive that their sense-making resources, including their cultural, linguistic, and everyday experiences, are not relevant to their science and mathematics classrooms, they may view these fields as inaccessible to them. This in turn creates an obstacle to their engagement and active participation which becomes particularly consequential for students from traditionally underrepresented populations. This issue points at the pressing need to prepare science and mathematics teachers to open up their instruction to students’ diverse ideas and meaning-making repertoires. This CAREER award aims to address this need by studying the construct of teachers’ "epistemic empathy” which is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity—an activity aimed at the construction, communication, and critique of knowledge. Through epistemic empathy, teachers take learners' perspectives and identify with their sense-making experiences in service of fostering their inquiries. The project’s goals are to examine how epistemic empathy can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom.

The five research questions will be: (1) Do the ways in which pre-service teachers display epistemic empathy change throughout a course aimed at promoting attention to and knowledge about learners’ varied ways of knowing in science and mathematics?; (2) How do the teaching domain and teaching context influence how teachers express epistemic empathy, and the concerns and tensions they report around empathizing with learners’ thinking and emotions?; (3) How does epistemic empathy shape the ways in which teachers understand and reflect on their roles, goals, and priorities as science or mathematics teachers?; (4) How does epistemic empathy shape teachers’ responsiveness to student thinking and emotions during instruction?; and (5) How does teachers’ epistemic empathy influence how students orient and respond to each other’s thinking in science and mathematics classrooms?

To address these questions, the project will conduct a series of design-based research studies working with science and mathematics pre-service and in-service K-12 teachers (n=140) to design, implement, and analyze ways to elicit and cultivate their epistemic empathy. Further, the project will explore how epistemic empathy shapes teachers’ views of their roles, goals, and priorities as science or mathematics teachers and how it influences their enactment of responsive teaching practices. The project will also examine the influence of teachers’ epistemic empathy on student engagement, in particular in the ways students attend and respond to each other’s epistemic experiences in the classroom. Data collection will include video and audio recording of teacher education and professional development sessions; collection of teachers’ work within those sessions such as their responses to a pre- and post- video assessment task and their written analyses of different videos of student inquiry; interviews with the teachers; and videos from the teachers’ own instruction as well as teachers’ reflections on these videos in stimulated recall interviews. These data will be analyzed using both qualitative methods (i.e., discourse analysis, interaction analysis) and quantitative methods (i.e., blind coding, descriptive statistics). The project’s outcomes will be: (1) an instructional model that targets epistemic empathy as a pedagogical resource for teachers, with exemplars of activities and tasks aimed at developing teachers' attunement to and ways of leveraging learners' meaning-making repertoires (2) local theory of teachers' learning to epistemically empathize with learners in science and mathematics; and (3) empirical descriptions of how epistemic empathy functions to guide and shape teachers' responsiveness and students' engagement. An advisory board will provide feedback on the project’s progress, as well as formative and summative evaluation.

Pages

Subscribe to Instructional Practices