Postsecondary Success

Language-Rich Inquiry Science with English Language Learners Through Biotechnology (LISELL-B)

This is a large-scale, cross-sectional, and longitudinal study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology.

Award Number: 
1316398
Funding Period: 
Thu, 08/01/2013 to Tue, 07/31/2018
Full Description: 

This is a large-scale (4,000 students, 32 teachers, 5 classes per teacher per year); cross-sectional (four grade levels); and longitudinal (three years) study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology. It builds on and extends the pedagogical model, professional development framework, and assessment instruments developed in a prior NSF-funded exploratory project with middle school teachers. The model is based on the research-supported notion that science and engineering practices and academic language practices are synergistic and should be taught simultaneously. It is framed around four key learning contexts: (a) a teacher professional learning institute; (b) rounds of classroom observations; (c) steps-to-college workshops for teachers, students, and families; and (d) teacher scoring sessions to analyze students' responses to assessment instruments.

The setting of this project consists of four purposefully selected middle schools and four high schools (six treatment and two control schools) in two Georgia school districts. The study employs a mixed-methods approach to answer three research questions: (1) Does increased teacher participation with the model and professional development over multiple years enhance the teachers' effectiveness in promoting growth in their students' understanding of scientific practices and use of academic language?; (2) Does increased student participation with the model over multiple years enhance their understanding of science practices and academic language?; and (3) Is science instruction informed by the pedagogical model more effective than regular instruction in promoting ELLs' understanding of science practices and academic language at all grade levels? Data gathering strategies include: (a) student-constructed response assessment of science and engineering practices; (b) student-constructed response assessment of academic language use; (c) teacher focus group interview protocol; (d) student-parent family interview protocol; (e) classroom observation protocol; (f) teacher pedagogical content knowledge assessment; and (g) teacher log of engagement with the pedagogical model. Quantitative data analysis to answer the first research question includes targeted sampling and longitudinal analysis of pretest and posttest scores. Longitudinal analysis is used to answer the second research question as well; whereas the third research question is addressed employing cross-sectional analysis. Qualitative data analysis includes coding of transcripts, thematic analysis, and pattern definition.

Outcomes are: (a) a research-based and field-tested prototype of a pedagogical model and professional learning framework to support the teaching of science and engineering practices to ELLs; (b) curriculum materials for middle and high school science teachers, students, and parents; (c) a teacher professional development handbook; and (d) a set of valid and reliable assessment instruments usable in similar learning environments.

Evaluation of the Sustainability and Effectiveness of Inquiry-Based Advanced Placement Science Courses: Evidence From an In-Depth Formative Evaluation and Randomized Controlled Study

This study examines the impact of the newly revised Advanced Placement (AP) Biology and Chemistry courses on students' understanding of and ability to utilize scientific inquiry, on students' confidence in engaging in college-level material, and on students’ enrollment and persistence in college STEM majors. The project provides estimates of the impact of students' AP-course taking on their progress into postsecondary educational experiences and their intent to continue to prepare to be future engineers and scientists.

Award Number: 
1220092
Funding Period: 
Sat, 09/15/2012 to Wed, 08/31/2016
Full Description: 

This study examines the impact of the newly revised Advanced Placement (AP) Biology and Chemistry courses on students' understanding of and ability to apply scientific inquiry, on students' confidence in successfully engaging in college-level material, and on students enrollment and persistence in college STEM majors. AP Biology and Chemistry courses represent an important educational program that operates at a large scale across the country. The extent to which the AP curricula vary in implementation across the schools in the study is also examined to determine the range of students' opportunity to learn the disciplinary content and the knowledge and skills necessary to engage in inquiry in science. Schools that are newly implementing AP courses are participants in this research and the challenges and successes that they experience are also a component of the research plan. Researchers at the University of Washington, George Washington University and SRI International are conducting the study.

The research design for this study includes both formative components and a randomized control experiment. Formative elements include observations, interviews and surveys of teachers and students in the AP courses studied. The experimental design includes the random assignment of students to the AP offered and follows the performances of the treatment and control students in two cohorts into their matriculation into postsecondary educational experiences. Surveys measure students' experiences in the AP courses, their motivations to study AP science, the level of stress they experience in their high school coursework and their scientific inquiry skills and depth of disciplinary knowledge. The study examines the majors chosen by those students who enter into colleges and universities to ascertain the extent to which they continue in science and engineering.

This project informs educators about the challenges and successes schools encounter when they expand access to AP courses. The experiences of the teachers who will be teaching students with variable preparation inform future needs for professional development and support. The project provides estimates of the impact of students' AP-course taking on their progress into postsecondary educational experiences and their intent to continue to prepare to be future engineers and scientists. It informs policy efforts to improve the access to more rigorous advanced courses in STEM and provides strong experimental evidence of the impact of AP course taking. The project has the potential to demonstrate to educational researchers how to study an educational program that operates at scale.

Morehouse College DR K-12 Pre-service STEM Teacher Initiative

This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs  

Lead Organization(s): 
Award Number: 
1119512
Funding Period: 
Fri, 07/15/2011 to Sat, 06/30/2018
Project Evaluator: 
Melissa K. Demetrikopoulos
Full Description: 

Morehouse College proposed a research and development project to recruit high school African American males to begin preparation for secondary school science, technology, engineering and mathematics(STEM) teaching as a career. The major goal of the program is to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs including: (a) How do students who remain in STEM education differ from those who leave and how do these individual factors (e.g. student preparation, self-efficacy, course work outcomes, attitudes toward STEM/STEM education, connectivity to STEM/STEM education communities, learning styles, etc) enhance or inhibit interest in STEM teaching among African American males? (b) What organizational and programmatic factors (e.g. high school summer program, Saturday Academy, pre-freshman program, summer research experience, courses, enhanced mentoring, cyber-infrastructure, college admissions guidance, leadership training, instructional laboratory, program management, faculty/staff engagement and availability, Atlanta Public Schools and Morehouse College articulation and partnership) affect (enhance or inhibit) interest in STEM teaching among African American males?

This pre-service program for future secondary STEM teachers recruits promising African American male students in eleventh grade and prepares them for entry into college.  The program provides academic guidance and curriculum-specific activities for college readiness, and creates preparation for secondary science and math teaching careers.   This project is housed within the Division of Science and Mathematics at Morehouse College and engages in ongoing collaboration with the Atlanta Public School (APS) system and Fulton County School District (FCS). The APS-FCS-MC collaboration fosters access and success of underrepresented students through (a) early educational intervention practices; (b) enhanced academic preparation; and (c) explicit student recruitment. 

The program consists of six major program components: High School Summer Program; Saturday Academy I, II, and III; Pre-Freshman Summer Program; and Summer Research Experience, which begins in the summer between the student’s junior and senior years of high school and supports the student through his sophomore year of college.  To date, collaborations between education and STEM faculty as well as between Morehouse, APS, and FCS faculty have resulted in development and implementation of all six program components.   Students spent six weeks in an intensive summer program with a follow-up Saturday Academy during their senior year before formally beginning their academic careers at Morehouse College. The program integrates STEM education with teacher preparation and mentoring in order to develop secondary teachers who have mastery in both a STEM discipline as well as educational theory. 

This pre-service program for future teachers recruited promising eleventh grade African American male students from the Atlanta Public School District to participate in a four-year program that will track them into the Teacher Preparation program at Morehouse College. The research focuses on the utility and efficacy of early recruitment of African American male students to STEM teaching careers as a mechanism to increase the number of African American males in STEM teaching careers.

Multiple Instrumental Case Studies of Inclusive STEM-Focused High Schools: Opportunity Structures for Preparation and Inspiration (OSPrl)

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

Lead Organization(s): 
Award Number: 
1118851
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. In contrast to highly selective STEM-focused schools that target students who are already identified as gifted and talented in STEM, inclusive STEM-focused high schools aim to develop new sources of STEM talent, particularly among underrepresented minority students, to improve workforce development and prepare STEM professionals. A new NRC report, Successful K-12 STEM Education (2011), identifies areas in which research on STEM-focused schools is most needed. The NRC report points out the importance of providing opportunities for groups that are underrepresented in the sciences, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. This project responds specifically to the call for research in the NRC report and provides systematic data to define and clarify the nature of such schools. 

The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study. The first phase of the study is focusing on 12 well-established and carefully planned schools with good reputations and strong community and business support, in order to capture the critical components as intended and implemented. Case studies of these high-functioning schools and a cross-case analysis using a set of instruments for gauging STEM design and implementation are contributing toward building a theory of action for such schools that can be applied more generally to STEM education. The second phase of the study involves selecting four school models for further study, focusing on student-level experiences and comparing student outcomes against comprehensive schools in the same district. Research questions being studied include: 1) Is there a core set of likely critical components shared by well-established, promising inclusive STEM-focused high schools? Do other components emerge from the study? 2) How are the critical components implemented in each school? 3) What are the contextual affordances and constraints that influence schools' designs, their implementation, and student outcomes? 4) How do student STEM outcomes in these schools compare with school district and state averages? 5) How do four promising such schools compare with matched comprehensive high schools within their respective school districts, and how are the critical components displayed? 6) From the points of view of students underrepresented in STEM fields, how do education experiences at the schools and their matched counterparts compare? And 7) How do student outcomes compare?

The research uses a multiple instrumental case study design in order to describe and compare similar phenomena. Schools as critical cases are being selected through a nomination process by experts, followed by screening and categorization according to key design dimensions. Data sources include school documents and public database information; a survey, followed by telephone interviews that probe for elaborated information, to provide a systematic overview of the candidate components; on-site visitations to each school provide data on classroom observations at the schools; interviews with students, teachers and administrators in focus groups; and discussions with critical members of the school community that provide unique opportunities to learn such as mentors, business leaders, and members of higher education community that provide outside of school learning experiences. The project is also gathering data on a variety of school-level student outcome indicators, and is tracking the likely STEM course trajectories for students, graduation rates, and college admission rates for students in the inclusive STEM-focused schools, as compared to other schools in the same jurisdiction. Analysis of the first phase of the study aims to develop rich descriptions that showcase characteristics of the schools, using axial and open coding, to determine a theory of action that illustrates interconnections among context, design, implementation, and outcome elements. Analysis of the second phase of the study involves similar processes on four levels: school, student, databases, and a synthesis of the three. Evaluation of the project consists of an internal advisory board and an external advisory board, both of which provide primarily formative feedback on research procedures.

Research findings, as well as case studies, records of instrument and rubric development and use, annual reports, and conference proposals and papers are being provided on a website, in order to provide an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. An effort is also being made to give voice to the experiences of high school students from the four pairs of high schools studied in the second phase of the study. Findings are also being disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations.

Pages

Subscribe to Postsecondary Success