Diversity

Development of Language-Focused Three-Dimensional Science Instructional Materials to Support English Language Learners in Fifth Grade (Collaborative Research: Lee)

The main purpose of this project is to develop instructional materials for a year-long, fifth grade curriculum for all students, including ELLs. The planned curriculum will promote language-focused and three-dimensional science learning (through blending of science and engineering practices, crosscutting concepts, and disciplinary core ideas), aligned with the Framework for K-12 Science Education, the Next Generation Science Standards, and the Conceptual Framework for Language use in the Science Classroom.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503330
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was submitted to the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project is responsive to the societal challenges emerging from the nation's diverse and rapidly changing student demographics, including the rise of English language learners (ELLs), the fastest growing student population (see, for example, "U.S. school enrollment hits majority-minority milestone", Education Week, February 1, 2015). ELLs have grown exponentially: 1 in 5 students (21%) in the nation spoke a language other than English at home in 2011. The project's main purpose is to develop instructional materials for a year-long, fifth grade curriculum for all students, including ELLs. The planned curriculum will promote language-focused and three-dimensional science learning (through blending of science and engineering practices, crosscutting concepts, and disciplinary core ideas), aligned with the Framework for K-12 Science Education (National Research Council, 2012), the Next Generation Science Standards (Achieve, 2013), and the Conceptual Framework for Language use in the Science Classroom (Lee, Quinn & Valdés, 2013). The grade-level science content will target topics, such as structure and properties of matter, matter and energy in organisms and ecosystems, and Earth's and space systems, with engineering design embedded in each topic. The language approach will emphasize analytical science tasks aimed at making sense of and constructing scientific knowledge; and receptive (listening and reading) and productive (speaking and writing) language functions. Products and research results from this project will help to reduce the science achievement gaps between ELLs and non-ELLs, and enable all students to attain higher levels of proficiency in subsequent grade levels.

After the curriculum has been developed and field-tested during Years 1-3, a pilot study will be conducted in Year 4 to investigate promise of effectiveness. Using a randomized controlled trial design, the pilot study will address three research questions: (1) What is the impact of the intervention on science learning and language development for all students, including ELLs and former ELLs?; (2) What is the impact of the intervention on teachers' instructional practices?; and (3) To what extent are teachers able to implement the instructional materials with fidelity? To address research question 1, a sequence of multi-level models (MLMs) in which the posttest score for each student measure (the state/district science test score, and the science score and the language score on the researcher-developed assessment) will be regressed on a dummy variable representing condition (treatment or control) and pretest covariates. To examine whether the intervention is beneficial for students of varying levels of English proficiency, subgroup analyses will be conducted comparing ELLs in the treatment group against ELLs in the control group; former ELLs in the treatment group against former ELLs in the control group; and non-ELLs in the treatment group against non-ELLs in the control group, using the same MLMs. Exploratory analyses will be employed to examine the extent to which the level of English proficiency moderates the impact of the intervention on ELLs. To address research question 2, a 2-level model (teachers as level-1, and schools as level-2) in which the post-questionnaire scale score will be regressed on a dummy variable representing condition (treatment or control) will be conducted. To address research question 3, plans are to analyze ratings on coverage, adherence, and quality of instruction from classroom observations, along with ratings on program differentiation and participant responsiveness from the implementation and feedback form.

Development of Language-Focused Three-Dimensional Science Instructional Materials to Support English Language Learners in Fifth Grade (Collaborative Research: Valdes)

The main purpose of this project is to develop instructional materials for a year-long, fifth grade curriculum for all students, including ELLs. The planned curriculum will promote language-focused and three-dimensional science learning (through blending of science and engineering practices, crosscutting concepts, and disciplinary core ideas), aligned with the Framework for K-12 Science Education, the Next Generation Science Standards, and the Conceptual Framework for Language use in the Science Classroom.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1502507
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project is responsive to the societal challenges emerging from the nation's diverse and rapidly changing student demographics, including the rise of English language learners (ELLs), the fastest growing student population (see, for example, "U.S. school enrollment hits majority-minority milestone", Education Week, February 1, 2015). ELLs have grown exponentially: 1 in 5 students (21%) in the nation spoke a language other than English at home in 2011. The project's main purpose is to develop instructional materials for a year-long, fifth grade curriculum for all students, including ELLs. The planned curriculum will promote language-focused and three-dimensional science learning (through blending of science and engineering practices, crosscutting concepts, and disciplinary core ideas), aligned with the Framework for K-12 Science Education (National Research Council, 2012), the Next Generation Science Standards (Achieve, 2013), and the Conceptual Framework for Language use in the Science Classroom (Lee, Quinn & Valdés, 2013). The grade-level science content will target topics, such as structure and properties of matter, matter and energy in organisms and ecosystems, and Earth's and space systems, with engineering design embedded in each topic. The language approach will emphasize analytical science tasks aimed at making sense of and constructing scientific knowledge; and receptive (listening and reading) and productive (speaking and writing) language functions. Products and research results from this project will help to reduce the science achievement gaps between ELLs and non-ELLs, and enable all students to attain higher levels of proficiency in subsequent grade levels.

After the curriculum has been developed and field-tested during Years 1-3, a pilot study will be conducted in Year 4 to investigate promise of effectiveness. Using a randomized controlled trial design, the pilot study will address three research questions: (1) What is the impact of the intervention on science learning and language development for all students, including ELLs and former ELLs?; (2) What is the impact of the intervention on teachers' instructional practices?; and (3) To what extent are teachers able to implement the instructional materials with fidelity? To address research question 1, a sequence of multi-level models (MLMs) in which the posttest score for each student measure (the state/district science test score, and the science score and the language score on the researcher-developed assessment) will be regressed on a dummy variable representing condition (treatment or control) and pretest covariates. To examine whether the intervention is beneficial for students of varying levels of English proficiency, subgroup analyses will be conducted comparing ELLs in the treatment group against ELLs in the control group; former ELLs in the treatment group against former ELLs in the control group; and non-ELLs in the treatment group against non-ELLs in the control group, using the same MLMs. Exploratory analyses will be employed to examine the extent to which the level of English proficiency moderates the impact of the intervention on ELLs. To address research question 2, a 2-level model (teachers as level-1, and schools as level-2) in which the post-questionnaire scale score will be regressed on a dummy variable representing condition (treatment or control) will be conducted. To address research question 3, plans are to analyze ratings on coverage, adherence, and quality of instruction from classroom observations, along with ratings on program differentiation and participant responsiveness from the implementation and feedback form.

Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418270
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

EarSketch: An Authentic, Studio-based STEAM Approach to High School Computing Education

This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses.

Award Number: 
1417835
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Project Evaluator: 
Mary Moriarity
Full Description: 

This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses. The project is grounded on the premise that EarSketch, a STEM + Art (STEAM) learning environment, embodies authenticity (i.e., its cultural and industry relevance in both arts and STEM domains), along with a context that facilitates communication and collaboration among students (i.e., through a studio-based learning approach). These elements are critical to achieving successful outcomes across diverse student populations. Using agent-based modeling, the research team will investigate what factors enhance or impede implementation of authentic STEAM tools in different school settings.

The researchers will be engaged in a multi-stage process to develop: a) an implementation-ready, web-based EarSketch learning environment that integrates programming, digital audio workstation, curriculum, audio loop library, and social sharing features, along with studio-based learning functionality to support student presentation, critique, discussion, and collaboration; and b) an online professional learning course for teachers adopting EarSketch in Computer Science Principles courses. Using these resources, the team will conduct a quasi-experimental study of EarSketch in Computer Science Principles high school courses across the state of Georgia; measure student learning and engagement across multiple demographic categories; and determine to what extent an EarSketch-based CS Principles course promotes student achievement and engagement across different student populations. The project will include measures of student performance, creativity, collaboration, and communication in student programming tasks to determine the extent to which studio-based learning in EarSketch promotes success in these important areas. An agent-based modeling framework in multiple school settings will be developed to determine what factors enhance or impede implementation of EarSketch under conditions of routine practice.

Centers for Learning and Teaching: Research to Identify Changes in Mathematics Education Doctoral Preparation and the Production of New Doctorates

This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.

Lead Organization(s): 
Award Number: 
1434442
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

The quality of the mathematical education provided to teachers and ultimately to their students depends on the quality of teacher educators at the colleges and universities. For several decades, there has been a shortage of well-prepared mathematics teacher educators. Doctoral programs in mathematics education are the primary ways that these teacher educators learn the content and methods that they need to prepare teachers, but the quality of these programs varies and the number of qualified graduates has been insufficient to meet the demand.

This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs. It will also gather data on the number of doctorates in mathematics education from the CLT institutions prior to the establishment of the CLT and after their CLT ended. A comparison group of Doctoral granting institutions will be studied over the same time frame to determine the number of doctoral students graduated during similar time frames as the CLTs. Follow-up data from graduates of the CLTs will be gathered to identify programmatic strengths and weaknesses as graduates will be asked to reflect on how their doctoral preparation aligned with their current career path. The research questions are: What were the effects of CLTs on the production of new doctorates in mathematics education? What changes were made to doctoral programs in mathematics education by the CLT institutions? How well prepared were the CLT graduates for various career paths?

Multimedia Engineering Notebook Tools to Support Engineering Discourse in Urban Elementary School Classrooms (Collaborative Research: Paugh)

This collaborative, exploratory, learning strand project focuses on improving reflective decision-making among elementary school students during the planning and re-design activities of the engineering design process. Five teacher researchers in three elementary schools provide the classroom laboratories for the study. Specified units from Engineering is Elementary, a well-studied curriculum, provide the engineering content.

Award Number: 
1316762
Funding Period: 
Thu, 08/01/2013 to Sun, 07/31/2016
Full Description: 

This collaborative, exploratory, learning strand project focuses on improving reflective decision-making among elementary school students during the planning and re-design activities of the engineering design process. Five teacher researchers in three elementary schools provide the classroom laboratories for the study. Specified units from Engineering is Elementary, a well-studied curriculum, provide the engineering content. In year one, the qualitative research observes student discourse as students develop designs. Based on the results, a paper engineering note book with prompts is designed for use in year two while a digital notebook is developed. In year three, the students use the digital notebook to develop their designs and redesigns.

The research identifies patterns of language that contribute to the reflective discourse and determines how the paper and electronic versions of the notebook improve the discourse. An advisory committee provides advice and evaluation. The notebooks are described in conference proceedings and made available online.

This work synthesizes what is known about the use of the notebooks in science and engineering education at the elementary school and investigates how to improve their use through digital media.

Undergraduate Biology Education Research Program

The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

Award Number: 
1262715
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

The Undergraduate Biology Education Research (UBER) REU Site engages undergraduates in studying important issues specific to the teaching and learning of biology, with mentorship from faculty in the Division of Biological Sciences and the Mathematics and Science Education Department at the University of Georgia. The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research by strategically recruiting and mentoring underrepresented and disadvantaged students, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

A programmatic effort to introduce undergraduates to the discipline of biology education research is unprecedented nationwide. Biology education research as a discipline is quite young, and systematic involvement of undergraduates has not been part of the culture or practice in biology or education. UBER aims to promote cultural change that expands the involvement of undergraduates in biology education research and raises awareness among undergraduates that biology teaching and learning are compelling foci for study that can be pursued at the graduate level and via various career paths. UBER utilizes a combined strategy of broad and strategic recruiting to attract underrepresented minority students as well as students who do not have access to biology education research opportunities at their own institutions. Evaluation plans involve tracking UBER participants over time to understand the trajectories of students who complete undergraduate training in biology education research.

Significant co-funding of this project is provided by the Division of Biological Infrastructure in the NSF Directorate for Biological Sciences in recognition of the importance of educational research in the discipline of biology. The Division of Undergraduate Education and the Division of Research on Learning in Formal and Informal Settings also provides co-funding.

Teacher's Guide to the Mathematics and Science Resources of the ELPD Framework

This two-year project will develop, pilot, validate, and publish a Teacher's Guide to the Science and Mathematics Resources of the ELPD Framework. This guide and related materials will translate the key science and mathematics concepts, ideas, and practices found within the ELPD Framework into classroom resources for direct use by teachers, schools, and districts to support English learners (ELs).

Award Number: 
1346491
Funding Period: 
Sun, 09/01/2013 to Mon, 08/31/2015
Full Description: 

The Council of Chief State School Officers (CCSSO) coordinated the development of a document addressing the implementation of Standards as guided by a framework for English Language Proficiency Development Standards (ELPD Framework). The expressed purpose of the ELPD Framework is to provide guidance to states on how to develop and use tools for the creation and evaluation of ELP standards. Once published, it became immediately apparent that the ELPD Framework would be of great help to teachers. However, the Framework was written specifically for those tasked with the responsibility to develop, adopt, or adapt state ELPD standards and assessments that support the language demands of STEM education grounded in learning performances that cojoin concepts with practices. That is, it has a technical focus rather than an instructional focus. There is an immediate need to develop and validate such a tool in states that have adopted Standards-based models, since educational agencies are now building teachers capacities to implement these standards.

This two-year project will develop, pilot, validate, and publish a Teacher's Guide to the Science and Mathematics Resources of the ELPD Framework. This guide and related materials will translate the key science and mathematics concepts, ideas, and practices found within the ELPD Framework into classroom resources for direct use by teachers, schools, and districts to support English learners (ELs).

Resources supporting ELs at different language proficiency levels in science and mathematics classrooms are sparse. Classroom-based resources supporting ELs' academic language development in science and mathematics based on career and college readiness standards are non-existent. The development of such a resource would have significant impact on science and mathematics teachers' teaching of ELs. Understanding how teachers' practice in supporting content-based academic language changes by using such a resource would be of great value for teachers, administrators, and researchers. Arguably, the ELPD Framework (and the proposed teacher's guide) has applications beyond ELs. Many challenges "at-risk" students face in science and mathematics classes may not be due to a lack in content knowledge, per se, but a lack of ability to communicate in the language of the content. The proposed teacher's guide could help teachers support all students in the language underlying the science and mathematics standards in the CCSS and NGSS.

Language-Rich Inquiry Science with English Language Learners Through Biotechnology (LISELL-B)

This is a large-scale, cross-sectional, and longitudinal study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology.

Award Number: 
1316398
Funding Period: 
Thu, 08/01/2013 to Tue, 07/31/2018
Full Description: 

This is a large-scale (4,000 students, 32 teachers, 5 classes per teacher per year); cross-sectional (four grade levels); and longitudinal (three years) study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology. It builds on and extends the pedagogical model, professional development framework, and assessment instruments developed in a prior NSF-funded exploratory project with middle school teachers. The model is based on the research-supported notion that science and engineering practices and academic language practices are synergistic and should be taught simultaneously. It is framed around four key learning contexts: (a) a teacher professional learning institute; (b) rounds of classroom observations; (c) steps-to-college workshops for teachers, students, and families; and (d) teacher scoring sessions to analyze students' responses to assessment instruments.

The setting of this project consists of four purposefully selected middle schools and four high schools (six treatment and two control schools) in two Georgia school districts. The study employs a mixed-methods approach to answer three research questions: (1) Does increased teacher participation with the model and professional development over multiple years enhance the teachers' effectiveness in promoting growth in their students' understanding of scientific practices and use of academic language?; (2) Does increased student participation with the model over multiple years enhance their understanding of science practices and academic language?; and (3) Is science instruction informed by the pedagogical model more effective than regular instruction in promoting ELLs' understanding of science practices and academic language at all grade levels? Data gathering strategies include: (a) student-constructed response assessment of science and engineering practices; (b) student-constructed response assessment of academic language use; (c) teacher focus group interview protocol; (d) student-parent family interview protocol; (e) classroom observation protocol; (f) teacher pedagogical content knowledge assessment; and (g) teacher log of engagement with the pedagogical model. Quantitative data analysis to answer the first research question includes targeted sampling and longitudinal analysis of pretest and posttest scores. Longitudinal analysis is used to answer the second research question as well; whereas the third research question is addressed employing cross-sectional analysis. Qualitative data analysis includes coding of transcripts, thematic analysis, and pattern definition.

Outcomes are: (a) a research-based and field-tested prototype of a pedagogical model and professional learning framework to support the teaching of science and engineering practices to ELLs; (b) curriculum materials for middle and high school science teachers, students, and parents; (c) a teacher professional development handbook; and (d) a set of valid and reliable assessment instruments usable in similar learning environments.

Pages

Subscribe to Diversity