Diversity

Building Capacity to Retain Underrepresented Students in STEM Fields

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions.

Lead Organization(s): 
Award Number: 
1741748
Funding Period: 
Mon, 05/01/2017 to Mon, 04/30/2018
Full Description: 

The NSF invests in a number of programs targeting underrepresented populations and institutions relative to its meeting its goals for broadening participation in STEM. This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers. The target audience for the workshop will be the participating institutions and their undergraduate students, in partnership with local K-12 schools.

In collaboration with Quality Education for Minority and MERAssociates, Rutgers University Newark will provide a unique setting to convene more than 100 participants to attend the workshop. The participants will include deans and/or department chairs; STEM faculty; educational researchers, and institutional representatives such as Vice Presidents of Academic Affairs, Provosts, or other administrators. The participants will work in teams of 4-5 to address science research topics and activities related to curriculum development, teacher support, and student engagement. Outcomes from the workshops will provide insights about successful strategies, areas of future research, and awareness about the need for better intervention models that support underrepresented minority students in STEM.

Culturally Responsive Indigenous Science: Connecting Land, Language, and Culture

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

Lead Organization(s): 
Award Number: 
1720931
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

The intersection between Indigenous and Western science continues to be of great importance to K-12 science education, particularly with regards to broadening participation in STEM. With over five hundred federally recognized Native American tribes in the United States, there is much to learn and understand. This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns. While Indigenous STEM teaching and learning as constructs have existed for many years, the rigorous research design and extensive integration of multimodal technologies as platforms for scientific inquiry, data management, knowledge dissemination and curation are innovative and timely. Few, if any, Design and Development projects in the current DRK-12 portfolio explore similar work. Therefore, the broader impacts of this project are poised to not only contribute to the DRK-12 portfolio but also advance knowledge in Indigenous STEM education and science education, more broadly.

Over a three year period, hundreds of Native American students (grades 4-9) in tribal schools located in Oregon, Washington, and Idaho will engage in the project. Each year, approximately 60-80 students (grades 7-9), with some returning students, will also participate in enrichment activities and in years 1-3, in the residential summer experience at Washington State University. A qualitative, quasi-experimental design-based study will be conducted to address three salient research questions: (a) What are the impacts of culturally responsive and land education-based ISTEM curriculum and technology on Native American student engagement, efficacy and achievement in school? (b) What types of professional development activities foster teacher efficacy and improve teacher learning and teaching of ISTEM in classrooms? and (c) How can ISTEM foster greater family and community engagement in schools and in Tribal Communities? Data will be collected through interviews, surveys, and or questionnaires from participating students, teachers, and Tribal members. Consistent with Indigenous methodologies, focus group interviews (talking circles) will also be facilitated after ISTEM community expositions and engagement activities to capture community impacts. Formative and summative evaluations will be conducted by the Learning and Performance Research Center (LPRC) at Washington State University, an independent entity of the University with extensive expertise in project evaluation. A broad range of dissemination activities will be employed to achieve maximum impacts, including the use of the Plateau People's Web Portal, a digital tool designed to help Native communities to manage, circulate, and curate their digital materials using their own cultural protocols, language and social systems. This regional collaboration includes partnerships with the Confederated Tribes of Warm Springs (Oregon), Confederated Tribes of the Colville Reservation (Washington), and the Coeur D'Alene Tribe (Idaho).

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hazari)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1721021
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Lock)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Lead Organization(s): 
Award Number: 
1720917
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hannum)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1720869
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hodapp)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Lead Organization(s): 
Award Number: 
1720810
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Learning in Places: Field Based Science in Early Childhood Education

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Lead Organization(s): 
Award Number: 
1720578
Funding Period: 
Sat, 07/01/2017 to Wed, 06/30/2021
Full Description: 

Recent evidence suggests that reasoning and making decisions about ecological systems is a cultural activity that impacts participation in the core scientific practices of observation, evidence use, and claims making. This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Using design-based research, the project team will collaborate with teachers, parents of participating students, and community garden educators to collectively design and develop four key components: 1) field-based curricular units for K-3 classrooms; 2) a model of family and community engagement that strengthens cultural relevance and equity in field-based science learning; 3) a pilot program of teacher professional development that informs future scaling efforts; and 4) research that unpacks student learning and teacher instructional practices that support children?s complex ecological reasoning and the cultural contexts of such knowledge. Data sources will include video, interviews, surveys, and student-created artifacts. A mixed-methods approach will be used to produce research findings at multiple levels including: student learning about complex ecological phenomena and field-based practices; classroom-level learning and high-leverage teaching practices in model units at each grade level; impacts of co-design on professional learning and practice; and family and community organizations learning and engagement in field-based science education. The project will be carried out by a research-practice-community partnership in Seattle, Washington that includes learning scientists (University of Washington), K-3 teachers and school administrators (Seattle Public Schools), garden educators (Seattle Tilth), and parents of participating students. In total, eight schools, 32 teachers, 800 students, and 32 families are expected to participate.

Readiness through Integrative Science and Engineering: Refining and Testing a Co-constructed Curriculum Approach with Head Start Partners

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

Lead Organization(s): 
Award Number: 
1621161
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Readiness through Integrative Science and Engineering (RISE) is a late stage design and development project that will build upon the results of an earlier NSF-funded design and development study in which a co-construction process for curriculum development was designed by a team of education researchers with a small group of Head Start educators and parent leaders. In this phase, the design team will be expanded to include Classroom Coaches and Community Experts to enable implementation and assessment of the RISE model in a larger sample of Head Start classrooms. In this current phase, an iterative design process will further develop the science, technology, and engineering curricular materials as well continue to refine supports for teachers to access families' funds of knowledge related to science, technology, and engineering in order to build on children's prior knowledge as home-school connections. The ultimate goal of the project is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families who tend to be underrepresented in curriculum development studies even though they are most at-risk for later school adjustment difficulties. The focus on science, technology, and engineering will address a gap in early STEM education.

The proposed group-randomized design, consisting of 90 teachers/classrooms (45 RISE/45 Control), will allow for assessment of the impact of a 2-year RISE intervention compared with a no-intervention control group. Year 1 will consist of recruitment, induction, and training of Classroom Coaches and Community Experts in the full RISE model, as well as preparation of integrative curricular materials and resources. In Year 2, participating teachers will implement the RISE curriculum approach supported by Classroom Coaches and Community Experts; data on teacher practice, classroom quality, and implementation fidelity will be collected, and these formative assessments will inform redesign and any refinements for Year 3. During Year 2, project-specific measures of learning for science, technology, and engineering concepts and skills will also be tested and refined. In Year 3, pre-post data on teachers (as in Year 2) as well as on 10 randomly selected children in each classroom (N = 900) will be collected. When child outcomes are assessed, multilevel modeling will be used to account for nesting of children in classrooms. In addition, several moderators will be examined in final summative analyses (e.g., teacher education, part or full-day classroom, parent demographics, implementation fidelity). At the end of this project, all materials will be finalized and the RISE co-construction approach will be ready for scale-up and replication studies in other communities.

Sonified Interactive Simulations for Accessible Middle School STEM

For this project, researchers will iteratively develop simulations to include sonifications, non-speech sounds that represent visual information, aimed at enhancing accessibility for all learners, but particularly for those with visual impairments to produce sonified simulations, professional development resources, design guidelines and exemplars, and publications.

Lead Organization(s): 
Award Number: 
1621363
Funding Period: 
Sat, 10/01/2016 to Mon, 09/30/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. Computer based simulations in science can provide valuable opportunities for these students to experience and manipulate natural phenomena related to critical STEM ideas. However, existing simulations remain largely inaccessible to students with visual impairments in particular. Recent advances in technology related to sonification use with simulations can make it possible for these students to have a more complete and authentic experience. Sonification is the use of non-speech sounds, such as musical tones, to represent visual information including data. Such sounds can be manipulated temporally and spatially and can also vary by amplitude and frequency to convey information that is more traditionally displayed visually. 

Researchers will iteratively develop five middle school physical science simulations to include sonifications aimed at enhancing accessibility for all learners, but particularly for those with visual impairments. Data collection activities will include focus groups and interviews with students and teachers focused on engagement. The end products of this project will include sonified simulations, professional development resources, design guidelines and exemplars, and publications.

Doing the Math with Paraeducators: A Research and Development Project

This project will design and pilot professional development that focuses on developing the confidence, mathematical knowledge, and teaching strategies of paraeducators using classroom activities that they are expected to implement. The planned professional development will enable them to make a greater difference in the classroom, but it will also increase their access to continuing education and workplace opportunities.

Lead Organization(s): 
Award Number: 
1621151
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

Over one million paraeducators (teaching assistants and volunteers) currently assist in classrooms, and another 100,000 are likely to be added in the next ten years. Paraeducators (paras) are often required to teach content, such as mathematics, but there are few efforts to provide them with the knowledge or supervision they need to be effective when working with a range of students, including those with disabilities and for whom English is a second language. The project will focus on developing the confidence, mathematical knowledge, and teaching strategies of paras using classroom activities that they are expected to implement. The planned professional development will enable them to make a greater difference in the classroom, but it will also increase their access to continuing education and workplace opportunities. The work will be conducted in the Boston Public Schools (BPS) and will focus on grades K-3, where the largest numbers of paras are employed. Given the importance of early math learning in predicting mathematical achievement, supporting paras who work in the early grades is particularly important.

The project will design and pilot professional development that supports paraeducator knowledge development and addresses instructional challenges in teaching mathematics. The project will address the following goals: research the current roles of paras in mathematics instruction, the preparation of their collaborating teachers, and the opportunities for collaboration and planning between supervising teachers and paras in BPS; pilot, develop, implement, and research a model for professional development program for paras that targets specific activities they can implement that are key to student learning in number and operation in K-3; document how paras assume new roles that increase student engagement and empower them as mathematical learners; pilot, develop, implement, and research a supervisory component to help teachers set expectations, and structures for debriefing and reflecting along with their paras; and identify next steps for an early stage development study based on our findings. A needs assessment survey will investigate the context in which paras work. The iterative process of design-based research will develop, test, and implement the targeted professional development with paras, measuring how prepared they feel to implement new ideas and how they translate their learning into new pedagogical practices. Crosscase analyses, descriptive statistics, tallies and coded behaviors from observations, and themes from paras, and teacher and administrator interviews will be collected, coded, and analyzed. Furthermore, an efficacy survey will be administered periodically to document longitudinal changes in paras, which will be integrated in the crosscase analyses.

Pages

Subscribe to Diversity