Projects

09/15/2025

This project addresses a crucial need in K-12 science teacher education to respond to local school district needs for high-quality science teaching and the role of teacher education programs to develop programs that provide prospective teachers the best opportunity for success as science teachers. Specifically, the project aims to advance science teacher education by applying a pragmatic, iterative approach to developing teacher education program resources and tools that will support the implementation of evidence-based STEM teaching and learning practices in K-12 science classrooms. The project will identify evidence-based STEM teaching and learning practices through a systematic review of K-12 STEM education research and resources. Rather than generate new evidence, the project leverages the evidence that already exists to support educators in adapting and sustaining existing high-quality practices that have already demonstrated positive impacts on students' STEM learning.

09/15/2025

This project addresses the critical need for improved mathematics education of elementary teachers and their students by preparing and supporting Elementary Mathematics Specialists (EMSs) who are highly effective mathematics teachers and teacher leaders. The program provides these EMSs with professional development grounded in research-informed practices and focuses on refinement of an existing program. The project aims to develop ambitious, responsive mathematics instruction and to provide high-quality coaching to teacher candidates and novice teachers.

09/15/2025

Scientific sensemaking is core to learning and doing science. Oral and written language, visual and numerical representations, physical models, and other forms of communication are vital to scientific sensemaking, yet research has not yet fully explored how science curricula can be customized to account for the unique communicative repertoires of individual learners within elementary science classes. This project will address this important gap in practice by developing a suite of tools that elementary teachers can use to customize existing open-source, standards-aligned science curricula, such that these curricula are better able to support students with a range of communicative strengths, including multilingualism.

09/15/2025

Throughout the United States, elementary classrooms include students with a range of communicative practices and strengths, including strengths in speaking one or more languages, and strengths in generating and understanding different types of representations. Although an emerging body of research has begun to explore how individual teachers can productively leverage these communicative strengths toward enhanced science learning and further develop language through science, there is currently little research on how larger-scale district infrastructures can be designed to support science learning that leverages and supports language development. This project will address this critical gap by developing a process through which school districts can design comprehensive infrastructures that leverage a broad range of linguistic and communicative practices for enhanced science learning among elementary students.

09/15/2025

Scientific sensemaking is core to learning and doing science. Oral and written language, visual and numerical representations, physical models, and other forms of communication are vital to scientific sensemaking, yet research has not yet fully explored how science curricula can be customized to account for the unique communicative repertoires of individual learners within elementary science classes. This project will address this important gap in practice by developing a suite of tools that elementary teachers can use to customize existing open-source, standards-aligned science curricula, such that these curricula are better able to support students with a range of communicative strengths, including multilingualism.

09/01/2025

This project synthesizes research on teacher learning to distill ideas and develop a new, deeper understanding of how preK-12 teacher professional learning in mathematics and science influences teacher beliefs, knowledge, and practice. This study will provide information that enables states, districts, and schools to elevate the quality of teacher professional learning in STEM to lead to more effective instruction that fosters more and better STEM student engagement and learning and motivates more students to choose STEM careers.

09/01/2025

Elementary school students' prolonged experiences with positive numbers and operations often lead to their overgeneralizations of rules (e.g., adding always makes larger numbers, subtracting always makes smaller numbers). These overgeneralizations can make learning algebra more difficult later, particularly when students must simultaneously learn algebra, negative numbers, and operations with negative numbers. The purpose of this project is to design and develop educational games centered on negative number concepts that target students before they learn algebra in middle school. Earlier exposure to and learning about negative numbers could increase students' motivation, understanding of connections between positive and negative numbers, and preparation for algebra.

09/01/2025

Elementary school students' prolonged experiences with positive numbers and operations often lead to their overgeneralizations of rules (e.g., adding always makes larger numbers, subtracting always makes smaller numbers). These overgeneralizations can make learning algebra more difficult later, particularly when students must simultaneously learn algebra, negative numbers, and operations with negative numbers. The purpose of this project is to design and develop educational games centered on negative number concepts that target students before they learn algebra in middle school. Earlier exposure to and learning about negative numbers could increase students' motivation, understanding of connections between positive and negative numbers, and preparation for algebra.

09/01/2025

Given the national priority for America's leadership in science, there is a need to strengthen the quality of teaching and learning in science classrooms. This conference brings together researchers, practitioners, curriculum developers, and policymakers to chart the future of curriculum-based professional development (CPBL) in science education. CBPL is an approach that uses high-quality curricular materials as a catalyst for teacher learning. Presently, the field is not clear about how teachers learn from these well-designed materials and what other supports might be necessary. This conference aims to address pressing questions about how high-quality materials can drive teacher learning, how materials should be designed to support teacher learning trajectories, how CBPL can promote high quality science education, and what organizational supports are needed for successful implementation. Through structured collaboration among stakeholders, the gathering will consolidate existing work and generate concrete plans for advancing both research and practice in ways that honor teacher professionalism while supporting student learning in science.

09/01/2025

Preschool and kindergarten-aged children are still developing the skills needed to reflect on and manage their own thinking, a process often referred to as metacognition. Without strategic support from their teachers, young children may struggle to make sense of inquiry-based science activities and possibly form enduring misconceptions that may hamper future science learning. Yet, many teachers are unfamiliar with the metacognitive processes or how to intentionally facilitate their development. This project explores both how to improve early childhood teachers' understanding of metacognition and develop strategies to guide teachers in using language and feedback to more effectively support emerging metacognition and science learning in young children.

09/01/2025

Elementary school students' prolonged experiences with positive numbers and operations often lead to their overgeneralizations of rules (e.g., adding always makes larger numbers, subtracting always makes smaller numbers). These overgeneralizations can make learning algebra more difficult later, particularly when students must simultaneously learn algebra, negative numbers, and operations with negative numbers. The purpose of this project is to design and develop educational games centered on negative number concepts that target students before they learn algebra in middle school. Earlier exposure to and learning about negative numbers could increase students' motivation, understanding of connections between positive and negative numbers, and preparation for algebra.

09/01/2025

Tomorrow's domestic STEM workforce demands that students bring the ability to explain real-world phenomena and solve problems collaboratively. In many school districts, a significant gap persists between this ambitious vision and the realities of current instruction. One promising approach to bridge this gap is the use of high-quality instructional materials (HQIM), which have been shown to improve science teaching and learning. However, school systems often face serious challenges in selecting, adopting, and implementing these materials in ways that lead to consistent implementation across classrooms and lasting change. This project will establish a research-practice partnership between the University of Colorado Boulder and the Weld RE-4 School District in Colorado to better understand and address these challenges. The project will generate new understandings that support the translation of research on how curriculum can improve teaching and learning into practice for a whole school district, and yield insights into how school districts navigate organizational dynamics and competing priorities during curriculum adoption.

08/01/2025

This project will develop a sustainable Research-Practice Partnership (RPP) model between the Worcester Public Schools (WPS) and the Learning Sciences Lab at Worcester Polytechnic Institute (WPI). Together, WPI and WPS will build the collaborative infrastructure for conducting impactful STEM education research within WPS. Specifically, the RPP will establish and document shared infrastructural systematic processes and materials, brainstorm and facilitate research ideas that address pressing issues in mathematics education, and build a community of trust among researchers, administrators, teachers, and families to make future research and implementation, innovation, and collaboration more impactful, accessible, and efficient.

08/01/2025

The rapid onset of AI, and generative AI tools such as LLMs, amplify the need for AI literacies, including concepts, practices and ethics, for K-12 schools. Some AI literacy resources, such as AI4K12 and AI4ALL, have emerged, but it may be challenging for schools, particularly those in small districts, to navigate these resources. Furthermore, researchers need further guidance on how to support schools for AI literacy. These challenges for schools and researchers include how to coordinate planning across teachers, school leaders and researchers, how to implement across grade levels, classrooms, and content areas; how to provide training and preparation time to support lesson design and implementation; and how to support teachers in their own AI literacy. To address these needs, district leaders and teachers from Forest Park School District and researchers from the University of Illinois Chicago will engage in a one-year research practice partnership development to build a long-term RPP, co-design an AI literacy curriculum, and support professional development to implement the curriculum.

08/01/2025

Scientific argumentation is one of the eight essential practices in the Next Generation Science Standards. Over the past decade, various methods have been employed to help middle-school students develop argumentation skills in formal learning environments. Despite these efforts, teachers continue to face challenges in motivating and engaging students, particularly in addressing the increasingly varied needs of students. Additionally, districts and schools struggle to integrate these research-based methods into their curriculum in ways that gain buy-in from teachers, students, and stakeholders. To address these challenges, this partnership development project brings together the West Aurora School District in Illinois and Northern Illinois University to pursue two primary goals: (1) co-construct a research and development plan focusing on ways to enhance support and effectiveness in the teaching practice of scientific argumentation through technology, and (2) develop a model for building a design research partnership between a school district and a mid-size public university.

12/15/2024

Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.

12/15/2024

Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.

12/01/2024

STEM learning is a function of both student level and classroom level characteristics. Though research efforts often focus on the impacts of classrooms level features, much of the variation in student outcomes is at the student level. Hence it is critical to consider individual students and how their developmental systems (e.g., emotion, cognition, relational, attention, language) interact to influence learning in classroom settings. This is particularly important in developing effective models for personalized learning. To date, efforts to individualize curricula, differentiate instruction, or leverage formative assessment lack an evidence base to support innovation and impact. Tools are needed to describe individual-level learning processes and contexts that support them. The proposed network will incubate and pilot a laboratory classroom to produce real-time metrics on behavioral, neurological, physiological, cognitive, and physical data at individual student and teacher levels, reflecting the diverse dynamics of classroom experiences that co-regulate learning for all students.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

To successfully understand and address complex and important questions in the field of environmental science, many kinds of communities’ knowledge about their local environment need to be engaged. This one-year partnership development project involves a collaboration to design an approach that would yield opportunities for K-12 students to learn about environmental science in ways that honor both traditional STEM knowledge and Native ways of knowing among the Pomo community in California.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

10/15/2024

Progress in science is motivated and directed by uncertainties. Yet even though uncertainty is a crucial fulcrum for scientific thought, school students are taught science within an overarching assumption that scientific knowledge is certain. This project explores the intellectual leverage of enabling middle school students to experience how scientific work grapples with uncertainty. The overall goal of this project is to understand how teachers can create equitable learning environments for culturally and linguistically diverse learners using Student Uncertainty for Productive Struggle as a pedagogical model in middle school science classrooms.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

An exit ticket is a recommended and widely used way to end a lesson. The most common purpose of exit tickets is to provide formative feedback to teachers about whether students have met the objectives of a given lesson. However, the psychology of learning literature suggests that there is an untapped potential for exit tickets to also benefit students’ learning directly. This project explores two potential enhancements to exit tickets, with the goal of improving high-school students’ mathematics knowledge and ability to regulate their own learning processes.