Over the years, researchers and practitioners have created and tested different ways to support students who struggle with learning mathematics. These methods include directly teaching various mathematics skills and strategies that affect mathematics performance, such as alleviating mathematics anxiety and fostering motivation and engagement in mathematics learning. The idea is that teaching mathematics using a mix of these skills or strategies might help students learn better than teaching just one skill or strategy at a time. However, it remains unclear which skills or strategies should be taught together and if mixing different skills or strategies leads to differential effects across different students or contexts. Understanding this is vital because it can help researchers and practitioners determine the best ways to address the need of struggling students in mathematics. A network meta-analysis will allow the field to examine different combinations of instructional skills/strategies as well as their interaction effects, which can provide more optimal information about different instructional approaches.
Projects
Semiconductors are essential components of electronic devices, enabling advances in important applications and systems such as communication, healthcare, and national security. In order to sustain the U.S.'s global competitiveness in the semiconductor industry, there is a growing demand for a skilled semiconductor workforce. High schoolers are among the most frequent users of electronic devices. However, many do not know how these devices are designed and manufactured. To address the knowledge gaps and workforce needs equitably, this project will develop a semiconductor curriculum with high-school-aged students from diverse backgrounds, and with partners in higher education, K-12, and industries, enhanced with artificial intelligence (AI) and other innovative technologies.
This five-year participatory research project follows students from transitional kindergarten to third grade to understand whether and how Number Talks (i.e., ten-to-fifteen-minute math discussions where students mentally solve mathematics problems and then come together as a class to share their mathematical reasoning) can empower students to develop productive mathematical identities while strengthening their number sense. As part of this work, grade level teams of teachers will investigate how to leverage the knowledge, skills, and resources students bring with them to mathematics class in order to spark productive mathematical identity development.
Science and engineering teaching and curriculum have begun to engage learners’ knowledge of themselves, their communities, and their experiences of science and engineering. This knowledge can make the experience of learning science and engineering more meaningful and impactful as learners can see greater connections between the content and how their own experiences and communities. However, assessment approaches for documenting and presenting what learners’ know have typically not been able to sufficiently represent the new approaches to teaching and learning. This conference brings together researchers, school leaders, and teachers to develop frameworks and resources for making culturally sustaining approaches to teaching and learning science and engineering.
The Inter-university Consortium for Political and Social Research (ICPSR) will host a workshop that brings together NSF-funded teams working on midscale research infrastructure incubator projects for STEM education research with a focus on education equity. ICPSR will share information, resources, and support incubator teams in developing and managing mid-scale infrastructure projects. These incubator projects have identified research infrastructure gaps related to assessments, teacher practices, and digital tools to support student learning and have proposed pilot tools, cyberinfrastructure, large-scale datasets, etc., for filling these gaps. To scale these pilots, the teams will need to successfully develop proposals to create mid-scale research infrastructure (Midscale RI). However, Midscale RI proposals require specialized knowledge that is not common within the STEM education research community and thus may limit the community’s ability to develop competitive Midscale RI proposals.
K-12 teachers are a critical resource for promoting equitable STEM achievement and attainment. Experimental research, however, rarely identifies specific, transferable STEM instructional practices, because STEM education research has typically implemented student-level randomization far more than it has implemented teacher-level randomization. A major barrier limiting scientific progress is the lack of a large-scale trialing infrastructure that can support teacher-level randomization and experimentation, given the logistical constraints of recruiting multiple sites and successfully randomizing at the teacher or classroom level. This Midscale Research Infrastructure Incubator will launch a two-year, accelerated process to address these challenges and develop a consensus plan for a STEM-teacher-focused trialing platform.
In the 21st century, the educational landscape is undergoing a seismic shift, with Artificial Intelligence (AI) emerging as a pivotal force reshaping the contours of teaching and learning, especially in the realm of science education. As educators, policymakers, and researchers grapple with the challenges and opportunities presented by this technological juggernaut, this project underscores the imperative to weave AI's transformative potential seamlessly with the foundational principles of Diversity, Equity, and Inclusion (DEI). The vision driving this initiative is twofold: harnessing the unparalleled capabilities of AI to revolutionize educational experiences while ensuring that these innovations are accessible, relevant, and beneficial to every student, irrespective of their background or circumstances.
The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.
The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.
The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.
This project envisions a future of work where advanced technologies provide automated, job-embedded, individualized feedback to drive professional learning of the future worker. To achieve this goal, it addresses a fundamental question: Are evaluative or non-evaluative feedback systems more effective in driving professional learning? This question will be tested on professionals where objective, fine-grained feedback is especially critical to improvement--the teaching professions. This research will be situated within English and language arts (ELA) instruction in middle and high school classrooms, where underperformance and inequality in literacy outcomes are persistent problems facing the U.S. Current methods of supporting teacher learning through feedback are sparse, cumbersome, subjective, and evaluative. Thus, a major reconceptualization is needed to provide feedback mechanisms that- meaningfully affect teacher practice and are accessible to all. In partnership with TeachFX, an industry leader in technology-enabled instructional feedback, this project will work with teachers to design and test systems of automated feedback. Insights from the study will lead to feedback systems that empower teaching professionals, generate continued professional learning, and ultimately, increase student achievement.
This project envisions a future of work where advanced technologies provide automated, job-embedded, individualized feedback to drive professional learning of the future worker. To achieve this goal, it addresses a fundamental question: Are evaluative or non-evaluative feedback systems more effective in driving professional learning? This question will be tested on professionals where objective, fine-grained feedback is especially critical to improvement--the teaching professions. This research will be situated within English and language arts (ELA) instruction in middle and high school classrooms, where underperformance and inequality in literacy outcomes are persistent problems facing the U.S. Current methods of supporting teacher learning through feedback are sparse, cumbersome, subjective, and evaluative. Thus, a major reconceptualization is needed to provide feedback mechanisms that- meaningfully affect teacher practice and are accessible to all. In partnership with TeachFX, an industry leader in technology-enabled instructional feedback, this project will work with teachers to design and test systems of automated feedback. Insights from the study will lead to feedback systems that empower teaching professionals, generate continued professional learning, and ultimately, increase student achievement.
The purpose of this project is to develop a home mathematics environment (HME) intervention for preschool-aged children with developmental delays (DD). The project includes caregivers of children with DD as collaborators in the iterative design process to develop feasible and sustainable HME intervention activities.
This project examines how Latine, bilingual teachers' dispositions to teach science and engineering to bilingual learners change as they enter the teaching profession. Specifically, it explores bilingual teachers' transition from a period of strong social support to one of scarce social support, i.e., from being Bilingual Teacher Candidates to Novice Bilingual Teachers (NBTs) as they plan and teach bilingual science and engineering lessons.
Understanding of algebra concepts is necessary for students to gain access to STEM pathways. However, recent efforts in education have failed to improve algebra outcomes for many students, especially those with learning disabilities and persistent difficulties in mathematics. The primary goal of this project is to develop a supplemental intervention that intentionally develops students' concept of variable as they learn to (a) interpret and evaluate expressions, (b) represent real-life mathematical word problems using algebraic notation, and (c) solve linear equations. A focus on clarifying common misconceptions about variables will be interwoven throughout the program.
Teachers are extraordinarily important to student learning, but researchers have surprisingly little data about what teachers do moment-to-moment with students. What are the instructional moves and improvisational responses that characterize highly effective practice? To better understand and support U.S. K-12 STEM teachers, this Incubator project will develop a network of "tutor observatories." Tutor observatories are learning environments that record teacher engagements with students along with information about the context of the interaction. From these data, researchers will be able to gain a deeper understanding of STEM teacher practice, identify highly effective practices, and develop training data that can inform a new generation of artificially intelligent tools to support teachers and student learning.
The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.
This RAPID project responds to the Buffalo blizzard of 2022 (Buffalo, NY) by developing, with and for the community, a science education curriculum framework focused on disaster justice and resilience. This project will document the science education human and social impact of the blizzard by capturing the experiences, reflections, and needs of science teachers, Black and Brown community leaders, and families who were directly affected.
This research study examines the potential of integrating student-driven descriptive investigations of complex multivariate civic datasets into middle school social studies classrooms. It uses a collaborative co-design process to develop data-rich experiences for the social studies classroom crafted to 1) deepen students' data literacy, 2) develop students' sense of efficacy in working with civic data sets, and 3) create learning experiences that connect data to local problems that have meaning for students and their communities.
The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.
This project is an innovative exploratory research study focused on developing a high school environmental engineering curriculum that addresses the challenges posed by climate change. The curriculum follows a model-validate-iterate design paradigm, where students model dynamic real-world systems, validate their models using data, and create multiple iterations to explore changes in the system over time. The project aims to cultivate a new generation of environmental engineers who possess the necessary skills to analyze complex systems, collaborate with diverse communities, and develop creative solutions.
This project investigates the STEM teacher pipeline and examine qualifications, from teacher candidates who express interest in teaching STEM through to the eventual career paths of teachers in the workforce. In doing so, the project examines how the supply of STEM teachers has changed over time, whether the supply is adequate in meeting the needs of a changing nation, the qualifications and credentials of STEM teachers, and the implications of the STEM teacher career paths for equity and serving high needs contexts and students.
The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.
This research synthesis systematically reviews and meta-analyzes the evidence on relationships between teacher support, student engagement, and mathematics achievement in the instructional–relational model framework. The researchers rigorously examine the consistency and variability of the relationships between the domains and constructs across studies.
This project contributes to advancing knowledge on STEM education focusing on societal challenges by harnessing the convergence of STEM subjects, including data science and computer science, to empower a minoritized student group—multilingual middle-school learners.