This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.
Projects
This project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices.
Geometry Assessments for Secondary Teachers (GAST) represents a collaborative partnership among faculty and staff at the University of Louisville, the University of Kentucky, Florida State University, Alpine Testing Solutions, and Horizon Research, Inc. to develop a knowledge framework and assessments for secondary mathematics teachers' geometry knowledge for teaching. The framework for the assessments will be designed to collect validity evidence for predicting effective geometry teaching and improving student achievement.
The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.
The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.
This project will develop and test a digital monitoring tool that will enable teachers to track student learning within a digital learning system and quickly adjust classroom instructional strategies to facilitate learning. The tool will be developed for use with an existing digital curriculum for high school genetics.
A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.
A long-standing challenge for education and learning sciences is sharing the distinct knowledge bases of researchers and teachers with each other. The goal of this project is to support teachers, STEM coaches, and researchers in sharing that knowledge so that they can learn from one another.
This project is hosting a conference for teachers and school administrators on Culturally Relevant Teaching (CRT). Teams of teachers and administrators are recruited from across the country. The conference brings together experts in culturally relevant teaching pedagogy with practitioners around the theme of promoting high achievement in mathematics among minority children and of children in urban settings.
This project involves holding a conference, Helping Teachers Become Culturally Relevant Teachers: Developing New Tools for a New Generation, where the goals are to bring together the very best researchers/practitioners in this field to present a clear theoretical underpinning of Culturally Relevant Teaching (CRT), present the most recent rigorous research to support the theory, and show clearly how CRT theory translates directly into classroom action.
Several small-scale experimental classroom studies Star and Rittle-Johnson demonstrate the value of comparison in mathematics learning: Students who learned by comparing and contrasting alternative solution methods made greater gains in conceptual knowledge, procedural knowledge, and flexibility than those who studied the same solution methods one at a time. This study will extend that prior work by developing, piloting, and then evaluating the impact of comparison on students' learning of mathematics in a full-year algebra course.
The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.
This exploratory study aims to design, implement, and test climate science and history professional learning materials and experiences for high school teachers. By leveraging existing science and history/social science materials, the program will develop curricular planning tools and lessons to help teachers integrate climate literacy into their instructional units. The goal is to provide students with the knowledge to understand and respond to the social and environmental issues associated with the climate crisis.
This project uses a mixed-methods design to test the hypothesis that key approaches to high school reform grease the mathematics and science pipelines for all students in reforming high schools. This study is intended to provide understanding of pipeline progression in reforming high schools and strategies successful schools employ to ensure timely pipeline progress for all students, particularly those historically underrepresented and underserved in mathematics and science and post-secondary education.
This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.
This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.
This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities.
This project is developing a science teacher education model focused on the establishment of a diagnostic learning environment through formative assessment as a powerful instructional practice for promoting learning of all students (grades 5–12) on the topic of energy with the goal of increasing the understanding of the processes through which teachers develop the requisite knowledge, skills, and dispositions for effective deployment of a formative assessment instructional cycle.
This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.
This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.
This project will study the impact and effect of the use of induction for first year middle grades mathematics teachers in three districts in Tennessee and Kentucky, including rural and urban settings. The purpose of this project is to study the links of components of induction to improved instruction and student achievement.
This project seeks to understand how children learn about place value by studying different representations of multi-digit numbers (written number symbols, heard number names) and how prior knowledge of number influences children’s’ learning. Knowing more about multi-digit number learning will help to create teaching and curriculum resources that better support children’s learning.
This project is preparing teams to bring together research mathematicians and middle school teachers of mathematics through the use of Teacher's Circles. These Circles are groups of mathematicians and school mathematics teachers that meet regularly to do mathematics. Such Circles have been shown to be mathematically stimulating for both the teachers and the mathematicians and the students of both benefit from the relationship.
This project will convene a panel of experts in government, industry and academia to raise and discuss emerging concerns for human subjects' protections in the digital age. This project will support scholarly discussion on human subjects' protections in the digital age with implications for funding agencies, schools, and those who work with human subjects in a variety of environments.