Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.
Projects
This project's approach uses two types of embodied performances: experiential performances that engage learners in using their bodies to physically experience scientific phenomena (e.g., the increase of heart rate during exercise), and dramatic performances where learners act out science ideas (e.g., the sources and impact of air pollution) with gestures, body movement, dances, role-plays, or theater productions. The project is adding to the limited science education literature on the use, value, and impact of embodied performances in science classrooms, and on the brilliance, ingenuity, and science knowledge that all youth, and particularly historically marginalized young people, have and can further develop in urban school classrooms.
This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.
This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.
This study will further the field's understanding of the role that science teachers play in adapting their instruction during a public health crisis, how they address emergent ideas throughout the unfolding of the pandemic, and the impacts that the pandemic has had on science teachers themselves.
This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).
This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution.
This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.
The goal of this research is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science. We will adapt the materials to address current science and mathematics standards, including key concepts from develop a professional development program for teachers, and test the efficacy of the materials through a quasi-experiment.
This project investigates the potential of online role-playing games for scientific literacy through the iterative design and research of Saving Lake Wingra, an online role-playing game around a controversial development project in an urban area. Saving Lake Wingra positions players as ecologists, department of natural resources officials, or journalists investigating a rash of health problems at a local lake, and then creating and debating solutions.
Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.
Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.
Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.
This project is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind.
This is a four-year project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language.
This project will develop a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.
Given the national priority for America's leadership in science, there is a need to strengthen the quality of teaching and learning in science classrooms. This conference brings together researchers, practitioners, curriculum developers, and policymakers to chart the future of curriculum-based professional development (CPBL) in science education. CBPL is an approach that uses high-quality curricular materials as a catalyst for teacher learning. Presently, the field is not clear about how teachers learn from these well-designed materials and what other supports might be necessary. This conference aims to address pressing questions about how high-quality materials can drive teacher learning, how materials should be designed to support teacher learning trajectories, how CBPL can promote high quality science education, and what organizational supports are needed for successful implementation. Through structured collaboration among stakeholders, the gathering will consolidate existing work and generate concrete plans for advancing both research and practice in ways that honor teacher professionalism while supporting student learning in science.
This grant examines the changes teachers and students go through in their first year of implementing a New Technology High School project-based curriculum for ninth graders in two high schools. This first year of implementation is part of a phased-in implementation for subsequent grades. The NTHS approach calls for moving from more traditional approaches to mathematics and science education to project-based curricula that posits mathematics and science in the context of real-world issues and problems.
The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.
This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.
This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.
This working conference will help university professors who teach elementary mathematics methods courses learn to use Complex Instruction, a research-proven pedagogy for building mathematical content knowledge and supporting the learning of diverse students.
As the nation tackles the challenges of energy transition, K-12 education must prepare a future STEM workforce that can not only apply STEM skills but also address reasoning through complex sociotechnical problems involving social justice. Aligned with the principles of socially transformative engineering and focused on students of color, this project involves the design and implementation of a novel STEM education curriculum that will support the development of secondary students’ abilities to reason through ambiguous and ethical challenges through design projects and to transfer these competencies to everyday life and future workplaces.