Projects

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This three-year early-stage design and development project will support a new teacher professional development and support model that builds the agency of 30 Miami-Dade County public high school science teachers to design, implement, and refine engineering instruction for their Latinx and Black students by partnering of high school teachers with Latinx and Black undergraduate engineering students in collaborative teams to co-design and implement inclusive, standards-aligned formal and informal engineering experiences. This work will generate new ways to support teachers’ roles as change agents in enacting engineering pedagogies centering those who have been historically excluded.

09/01/2022

In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.

09/01/2022

EarthX is a design-based research project that supports the integration of Earth science into high school biology, chemistry, and physics courses in Baltimore City Public Schools, while also supporting the district’s transition to three-dimensional (3D), ambitious and equitable science teaching aligned with the Next Generation Science Standards (NGSS). EarthX builds on the success of the Integrating Chemistry and Earth Science (ICE) DRK-12 project, which developed innovative chemistry course curriculum materials and PD strategies, to support Earth science integration into biology and physics course curriculum development and 3D teaching. EarthX will develop, test, and refine embedded and unit assessments for all three courses, along with providing an online system for assessment administration; real-time reporting to teachers and students; and provision of data to PD leaders, administrators, and researchers for multiple purposes. Assessments will be 3D, featuring core concepts from both Earth science and the course discipline combined with a science or engineering practice and a crosscutting concept.

09/01/2022

Three-dimensional figures can now be represented as diagrams that appear to extend into space in ways that are free of material or physical constraints. They can be rendered at any size, in any orientation, and at any position in space, and can thereby realize a far more varied set of mathematical concepts than what is possible with physical models. The goal of this project is to investigate the transformative educational potential of these representations and to generate a knowledge base that teachers, teacher educators, and researchers can use to reimagine the learning and teaching of geometry.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project examines the effect of an assessment system that automatically generates feedback based on students’ open-ended assessment responses in chemistry and physics consistent with a previously-developed learning progression that describes the successively more complex understandings students can develop about electrical interactions. The scoring system will provide individualized feedback to students and class summaries to their teachers.

09/01/2022

This project considers how teachers’ engagement in scientific sensemaking as an opportunity for teachers’ learning to support more expansive science learning environments. It seeks to address two ongoing challenges in science teacher education: the need for teachers to learn (1) to recognize, value, and integrate students’ diverse ways of knowing, communicating, and relating with one another and phenomena and (2) to acknowledge and disrupt restrictive narratives that shape what counts as science in schools and who is seen as a scientist. This project will provide new models for science teacher education to engage teachers in expansive scientific sensemaking, seeking to develop more humanizing relationships between teachers, students, and science. More broadly, the project will produce a new structure for professional learning and resources for supporting more heterogeneous and equitable forms of science in teacher education. 

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

This project uses neural and behavioral measures of learning as a basis for making improvements to an immersive high school course that trains students in flexible spatial cognition and data analysis. Tracking students into college, the project measures long-term effects of improved spatial cognition resulting from the modified geospatial course curriculum.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.

08/01/2022

This project aims to elaborate a structure for practice-oriented, collaborative professional development that increases the capacities for collaborative learning by facilitating teacher-to-teacher interactions within and across cultural contexts. By convening international groups of teachers to design lessons and provide and respond to commentaries on their lesson designs, the project introduces possibilities for surfacing and disrupting common experiences, assumptions, and norms in US mathematics teaching.

07/15/2022

This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.

07/15/2022

Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.

07/15/2022

This project addresses a major educational barrier, namely that rural students are less likely to choose a major in STEM and have far less access to advanced STEM courses taught by highly qualified teachers. The LogicDataScience (LogicDS) curriculum and virtual delivery are expected to relieve the resource constraints significantly and thus reach rural students. The strategy behind this curriculum development for data science explores the utility of emphasizing how the foundations of data science in computing, mathematics, and statistics are unified by mathematical logic. The project is studying the impacts of the new curriculum on students’ learning of computing, mathematics, and statistics.

07/15/2022

Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.

07/01/2022

Teachers’ beliefs influence their instructional decisions and these decisions shape the mathematical learning opportunities for all students. This is particularly important when considering the learning opportunities for groups that have historically been marginalized in mathematics, including girls and students of color. There are few validated, mathematics-specific instruments that measure teachers’ beliefs about mathematics learning related to race, ethnicity, and gender. This project seeks to investigate teachers’ beliefs related to how they explain the systemic racial and gender differences in mathematics education outcomes by developing and validating a survey instrument and to explore how those beliefs might impact their teaching.

07/01/2022

With increased focus on STEM education for students with extensive support needs ESN, engineering practices highlight the importance of problem-solving skills (e.g., systems thinking, creativity), and engineering lessons/units may provide a viable format for systematically planned math and science instruction that naturally embeds opportunities to teach students skills promoting increased self-regulated learning. Due to lack of prior experience teaching engineering, little is known about how teachers of students with ESN scaffold instruction to build their students’ engineering practices. Thus, this project focuses on teachers’ development of engineering practices, including how teachers support their students’ development of engineering-focused behaviors and mindsets through instruction.

07/01/2022

This project connects interdisciplinary researchers and experts from four tribal nation partners to develop and implement an in-service teacher professional certificate program that integrates Indigenous Knowledge into STEM teaching. This multi-sited teacher professional development model will enroll K-12 teachers in four different Native-serving regions of the rural West into a 12-month certificate program that combines Indigenous science, Coupled Human and Natural Systems, and Land education concepts into an experiential learning cycle with local and broad study of learning with the Land. The project will add knowledge about the transferability of local epistemologies and practices and national science standards within four specific Indigenous contexts and expand space for tribal-lead professional development to transform teacher classroom practice.

07/01/2022

This project will develop and investigate mathematics language routines focused on data science topics in middle and high school. The study will investigate teachers’ use of mathematics language routines and a professional development model to support teachers’ learning. The educational integration plan in the project will build mathematics teacher expertise and create video cases to support teacher professional development.