Projects

09/15/2016

This project's first goal is to study the national landscape of mathematics intervention classes, which are additional classes provided to struggling students, including learners with and without identified disabilities. We administered a survey to a nationally representative sample of 2,024 urban and suburban public schools with grades 6-8 to find out how these classes are being implemented and the types of challenges faced. Approximately 43% of schools (876 schools) responded to the survey; the findings revealed widespread implementation of these classes (69% of schools) and highlighted a range of practices in terms of class size, scheduling, duration, staffing and content focus. Our project's second goal is to apply the survey findings to design professional development to support teachers of mathematics intervention classes, helping them to build knowledge and practices for addressing students' wide range of learning needs.

07/01/2019

This project is a professional learning experience for middle school teachers to support them in developing five mathematical practices in their teaching focused on mathematical argumentation - creating mathematical arguments, using appropriate tools strategically, looking for and make use of structure, attending to precision, and looking for and express regularity in repeated reasoning.

09/01/2019

This project will explore how a nationally implemented professional development model is applied in two distinct Indigenous communities, the impact the model has on teacher practice in Native-serving classrooms, and the model's capacity to promote the integration of culturally responsive approaches to STEM teaching.

01/01/2010

This project is examining the relationship between specific technology-based motivational activities and grade 5 to 9 student interest in STEM careers through a variety of classroom-based experiences. The project will test a series of specific hypotheses relating motivation, self-efficacy, STEM career interest, and mathematics learning to activity assignment.

09/01/2010

This project is using innovative Geospatial Information Technology-based learning in high school environmental science studies with a focus on the meteorological and ecological impacts of climate change. The resources developed are using ArcGIS Explorer Desktop and Google Earth software applications to increase students' learning and interest in science and careers and will be adaptable for teachers to improve classroom implementation.

10/01/2023

This project examines how Latine, bilingual teachers' dispositions to teach science and engineering to bilingual learners change as they enter the teaching profession. Specifically, it explores bilingual teachers' transition from a period of strong social support to one of scarce social support, i.e., from being Bilingual Teacher Candidates to Novice Bilingual Teachers (NBTs) as they plan and teach bilingual science and engineering lessons.

09/01/2022

Familial presence in school supports children’s learning. However, few models exist that illustrate forms of familial presence in STEM learning that center familial cultural knowledge and practice. The project will produce a model for familial engagement in STEM along with instructional tools and illustrative case-studies that can be used by teachers and school districts nationally in support of increasing students’ STEM learning. This three-year study investigates new instructional practices that support rightful familial presence in STEM as a mechanism to address the continued racial and class gaps in STEM achievement for historically marginalized students.

09/01/2016

This project will conduct a study to identify instructional practices and professional development approaches for teachers and the policies needed to support ELLs' accomplishments in science and math. The study will synthesize research relevant to improving ELLs' STEM learning, offer insight into how to support both English language development and science and math learning, and provide a framework for future research to help identify the most relevant and pressing questions for the field.

08/15/2008

This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

09/15/2016

This project will explore the potential of video-based formative feedback to enhance professional development around ambitious instruction for secondary teachers in urban schools.

07/01/2023

This project will provide rural STEM middle school teachers and career counselors professional development and the support needed to collaborate with each other and local community assets in designing, integrating, and implementing effective STEM content and career development activities. Local teams will co-develop project-based learning units that incorporate a place-based education perspective involving STEM assets, careers, and stakeholders from the local communities for middle school rural youth that intentionally infuse STEM careers in their area with STEM content.

08/01/2020

This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. Working in groups to design a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion and record their ideas and explanations in a digital journal.

08/01/2020

This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. Working in groups to design a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion and record their ideas and explanations in a digital journal.

09/01/2010

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through students’ understanding of scientific practice as measured by their attention to generality of explanation, clarity of communication, audience understanding, evidentiary support, and mechanistic versus descriptive accounts.

08/01/2014

This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

08/01/2014

This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12.

09/01/2022

In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.

09/01/2008

This project is (1) conducting a qualitative study on the way facilitators use Math for All (MFA), an NSF-supported set of professional development materials for teachers who teach elementary school students with disabilities; (2) developing resources based on that study for teacher leaders and other facilitators of professional development; and (3) conducting fieldtests of the resources to examine their usefulness and impact.

09/01/2020

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

07/01/2021

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

07/01/2021

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.