Projects

08/15/2017

The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms; design, develop, and iteratively refine its intelligent virtual learning companions; and generate research findings and evidence about how children collaborate in computer science learning and how best to support their collaboration with intelligent virtual learning companions.

08/15/2017

The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms; design, develop, and iteratively refine its intelligent virtual learning companions; and generate research findings and evidence about how children collaborate in computer science learning and how best to support their collaboration with intelligent virtual learning companions.

09/01/2017

This study will design a curricular framework for developing children's algebraic thinking across Grades K-2, with a particular focus on understanding how to support the teaching and learning of algebra with students in at-risk settings.

09/01/2017

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

09/01/2017

This project will bring together two groups of educators - elementary school teachers (formal) and cooperative extension science volunteers (informal) - to create a community-based professional development partnership that improves educators' self-efficacy, science content knowledge, and instructional practice. The model builds on the premise that both groups have expertise that can be shared and collaboratively developed.

09/01/2017

This project will develop a scalable, classroom-focused measure of usable mathematics teaching knowledge that is aligned with the state standards through a classroom video analysis measure (CVA-M) in three content areas: (a) fractions for grades 4 and 5, (b) ratio and proportions for grades 6 and 7; and (c) variables, expressions, and equations for grades 6 and 7. The project will examine the psychometric properties of the new items and scales, including the reliability of scores, and collect evidence on content, substantive, structural, and external aspects of validity to evaluate the overall construct validity of the CVA-M.

09/01/2017

This project will research how elementary (K-5) teachers in the Teacher Engineering Education Program (TEEP) program progress in one particular aspect of responsive teaching, noticing student thinking. Project research will also contribute to literature on how to support responsive teaching in web-based environments, expanding understanding of how design principles and features developed in in-person professional development settings can be implemented online. The project will refine a program for engineering teachers nationwide, identify key features that are effective in developing teachers' practice, and create video resources for other professional development programs to use.

09/01/2017

Building on successful prior work, this project simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning. The project aims to: 1) Transform early childhood science teaching based upon Next Generation Science Standards (NGSS) to measurably increase student science, literacy, and math achievement, and 2) Engage families of PreK-3 students in science inquiry practices to measurably improve student science, literacy, and math achievement.

09/01/2017

This project builds upon the prior work by creating problem-solving measures for grades 3-5. The elementary assessments will be connected to the middle-grades assessments and will be available for use by school districts, researchers, and other education professionals seeking to effectively measure children's problem solving. The aims of the project are to (a) create three new mathematical problem-solving assessments and gather validity evidence for their use, (b) link the problem-solving measures (PSMs) with prior problem-solving measures (i.e., PSM6, PSM7, and PSM8), and (c) develop a meaningful reporting system for the PSMs.

09/01/2017

This project builds upon the prior work by creating problem-solving measures for grades 3-5. The elementary assessments will be connected to the middle-grades assessments and will be available for use by school districts, researchers, and other education professionals seeking to effectively measure children's problem solving. The aims of the project are to (a) create three new mathematical problem-solving assessments and gather validity evidence for their use, (b) link the problem-solving measures (PSMs) with prior problem-solving measures (i.e., PSM6, PSM7, and PSM8), and (c) develop a meaningful reporting system for the PSMs.

09/15/2017

The primary aim of this study is to develop mathematics screening assessment tools for Grades K-2 over the course of four years that measure students' abilities in numeric relational reasoning and spatial reasoning. The team of researchers will develop Measures of Mathematical Reasoning Skills system, which will contain Tests of Numeric Relational Reasoning (T-NRR) and Tests of Spatial Reasoning (T-SR). The measures will be intended for use by teachers and school systems to screen students to determine who is at-risk for difficulty in early mathematics, including students with disabilities.

10/01/2017

This project will work in partnership with the Santa Clara Unified School District (SCUSD) to adapt a previously designed Professional Learning (PL) model based on the District's objectives and constraints to build the capacity of teacher leaders and a program coordinator to implement the adapted PL program. The project is examining the sustainability and scalability of a PL model that supports the development of teachers' pedagogical content knowledge and instructional practices. The project is contributing knowledge about how to build capacity in districts to lead professional learning in science that addresses the new teaching and learning standards and is responsive to the needs of their local context.
 

10/01/2017

This project will work in partnership with the Santa Clara Unified School District (SCUSD) to adapt a previously designed Professional Learning (PL) model based on the District's objectives and constraints to build the capacity of teacher leaders and a program coordinator to implement the adapted PL program. The project is examining the sustainability and scalability of a PL model that supports the development of teachers' pedagogical content knowledge and instructional practices. The project is contributing knowledge about how to build capacity in districts to lead professional learning in science that addresses the new teaching and learning standards and is responsive to the needs of their local context.

03/01/2018

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years.

04/15/2018

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities.

05/15/2018

The Next Generation Science Standards (NGSS) emphasize the integration of scientific knowledge and the practices of science, a recognition that science classrooms are complex learning environments. Meeting this expectation requires teachers to move beyond traditional routines of practice to become adaptive experts who can adjust their teaching to maximize learning in varied classroom situations. The project will work with teachers to implement a three-year professional development program to assist teachers in the development of adaptive expertise through implementation of an argument-based inquiry approach.

06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

07/01/2018

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

07/01/2018

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

08/01/2018

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

09/01/2018

The purpose of this project is to develop, implement and test a professional development program, SOAR for Math, to build capacity for mentors and teachers to improve English learner's academic language development and mathematical content understanding.

09/01/2018

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

09/01/2018

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.