Acquiring scientific knowledge and skills requires persisting through challenges, yet it has become increasingly common for parents in the United States to step in and solve problems for their children. This type of over-engaged parenting leads preschool-age children to have lower persistence, lower executive function, and worse reading and math achievement in grade school across socioeconomic backgrounds. Prior work leaves open major theoretical and practical questions about the beliefs that drive over-engaged parenting and children’s response to it. Our research aims to fill these gaps by examining the causes and consequences of over-engaged parenting so that we can better understand how caregivers can support children's scientific success upon school entry.
Projects
The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.
This project will bring together two groups of educators - elementary school teachers (formal) and cooperative extension science volunteers (informal) - to create a community-based professional development partnership that improves educators' self-efficacy, science content knowledge, and instructional practice. The model builds on the premise that both groups have expertise that can be shared and collaboratively developed.
The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically.
Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.
This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.
This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).
This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The project will integrate engineering design, technology and society, electrical knowledge, and computer science to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.
This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.
Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering).
This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.
