Projects

08/15/2024

High school counselors play an integral role in supporting students’ trajectories toward science, technology, engineering, and mathematics (STEM) careers. Many professional learning experiences for counselors have not focused specifically on developing awareness of a broad array of STEM careers and the corresponding high school activities and coursework that can establish students’ trajectories toward these careers. This project addresses this gap in practice by developing year-long professional learning experiences focused on engineering-related careers, with and for high school counselors.

09/01/2017

This project will research how elementary (K-5) teachers in the Teacher Engineering Education Program (TEEP) program progress in one particular aspect of responsive teaching, noticing student thinking. Project research will also contribute to literature on how to support responsive teaching in web-based environments, expanding understanding of how design principles and features developed in in-person professional development settings can be implemented online. The project will refine a program for engineering teachers nationwide, identify key features that are effective in developing teachers' practice, and create video resources for other professional development programs to use.

09/01/2019

This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).

08/01/2021

Using high school statewide longitudinal data from Maryland from 2012-2022, this study will first document who has taught STEM-CTE courses over this period. After exploring the teaching landscape, the study will then explore whether qualifications (i.e., education, credentials, teaching experience) of teachers in STEM-CTE high school courses were associated with their students’ success.

07/01/2023

This project will develop a standards-aligned engineering professional learning model for elementary teachers of multilingual learners. This interdisciplinary approach is innovative in its effort to provide teachers with sustained time to reflect on what they believe about language, their teaching of linguistically and racially minoritized students, and their interactions with multilingual students around engineering content. Using a participatory and collaborative approach, experts in literacy, language, and engineering will work with elementary teachers to develop strategies for how teachers can view students’ multilingualism as an asset to engineering.

07/01/2022

This project builds on a successful introductory computer science curriculum, called Scratch Encore, to explore ways to support teachers in bringing together—or harmonizing—existing Scratch Encore instructional materials with themes that reflect the interests, cultures, and experiences of their students, schools, and communities. In designing these harmonized lessons, teachers create customized activities that resonate with their students while retaining the structure and content of the original Scratch Encore lesson.

09/01/2024

Navigating complex societal issues such as water shortages, forest fires, and other phenomena-based problems requires understanding the social, technological, and scientific dimensions surrounding the issues and they ways these dimensions interact, shift, and change. Despite its importance, however, developing students’ socioscientific literacy has received limited attention in elementary science teaching and learning contexts. This project begins to address this problem of practice by focusing first on developing elementary teachers’ socioscientific literacy and their capacity to integrate socioscientific issues and local phenomena in their science teaching practice.

09/01/2023

Early childhood educators (ECEs) understand that effective science teaching and learning requires content knowledge related to science concepts and practices and pedagogical knowledge. However, ECEs, especially in rural communities, express a lack of science content knowledge and confidence in incorporating science-related conversations in their early care and education settings, and they believe this might be a result of limited professional training relevant to science content. This project aims to strengthen key capabilities in ECEs, including the ability to (1) build science content knowledge and confidence in guiding young children's scientific investigation, (2) closely observe children's interactions with science materials, and (3) use those observations in the reflection, planning, and practice of science teaching.

09/01/2020

This exploratory project will design, pilot, and evaluate a 10-week, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements.

08/01/2017

This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics, which is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning.

05/15/2021

This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for English learners (ELs). The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning.

01/01/2021

In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.

07/15/2020

This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

09/01/2020

This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.

09/01/2022

This project will explore how children in grades K-2 understand visual representations of algebraic concepts. For instance, children might create tables or graphs to organize information about the relationship between two quantities. They might use graphs and diagrams to explain their mathematical thinking and develop their understanding of relationships in numbers and operations. The project will use data gathered in K-2 classrooms and via interviews with children to describe their use of the visual representations. This exploratory project aims to develop learning trajectories as cognitive models of how children in grades K–2 understand visual representations for algebraic relationships.

08/01/2017

This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources, and how the resources then relate to kindergartners mathematics learning.

09/15/2023

This project is an innovative exploratory research study focused on developing a high school environmental engineering curriculum that addresses the challenges posed by climate change. The curriculum follows a model-validate-iterate design paradigm, where students model dynamic real-world systems, validate their models using data, and create multiple iterations to explore changes in the system over time. The project aims to cultivate a new generation of environmental engineers who possess the necessary skills to analyze complex systems, collaborate with diverse communities, and develop creative solutions.

09/01/2023

This exploratory study aims to design, implement, and test climate science and history professional learning materials and experiences for high school teachers. By leveraging existing science and history/social science materials, the program will develop curricular planning tools and lessons to help teachers integrate climate literacy into their instructional units. The goal is to provide students with the knowledge to understand and respond to the social and environmental issues associated with the climate crisis.

07/01/2022

This project seeks to understand how children learn about place value by studying different representations of multi-digit numbers (written number symbols, heard number names) and how prior knowledge of number influences children’s’ learning. Knowing more about multi-digit number learning will help to create teaching and curriculum resources that better support children’s learning.

07/15/2020

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

08/15/2017

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

08/15/2021

This project will investigate the challenges, needs, and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF), in particular the Division of Research on Learning in Informal and Formal Settings (DRL). The project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs.

07/01/2017

This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.

01/01/2019

This Rapid Response Research (RAPID) project is an exploratory mixed methods study investigating the impact of vulnerability and resilience in the recovery of North Carolina schools affected by both Hurricanes Florence (2018) and Matthew (2016). Specifically, the study assesses whether schools that were impacted by both storms used organizational learning strategies to recover faster than schools that were impacted by either Hurricane Florence or Matthew alone.

07/15/2022

Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.