Projects

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

10/01/2016

This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.

09/01/2011

This project is developing Earth and Space Science multimedia educative curriculum materials (MECMs) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The project is investigating the impact of the MECMs on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments.

09/01/2011

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

07/01/2021

In COVID Connects Us, the project team investigates the challenges of learning how to support justice-centered ambitious science teaching (JuST). The project team will partner with networks of secondary science teachers as they first implement a common unit aimed at engaging youth in science and engineering practices in ways that are culturally sustaining, focused on explanation-construction and intentionally anti-oppressive. The teachers will then use their shared experiences to revise future instruction in ways that are justice-centered and that engage students in the ways research suggests is important for their learning.

09/15/2013

This RAPID project is a cross-national comparative study of U.S. and Chinese instructional support systems, building from earlier data about mathematics teaching and learning in large urban school districts of both the United States and the People's Republic of China. The study uses quantitative methods to compare and contrast the effectiveness of supports (e.g., professional development, teacher networks, school leadership) in improving teachers' instructional practices and student achievement using comparable instrumentation.

09/01/2023

This project seeks to better understand how teachers' capacity and willingness to customize instructional approaches to meet standards and the needs of diverse student populations develops through initial practice and successive enactments of curriculum materials. This work will address current gaps in the literature and contribute to an overall understanding of how teachers develop the capacity to use curricula in ways that advance the goal of equitable science instruction.

05/15/2004

This project is developing a series of print and web resource guides in science and mathematics based on curriculum topic study (CTS), an approach developed and tested successfully. CTS is used to provide a systematic way of intellectually engaging K-12 mathematics and science teachers with national standards and cognitive research. It is used to engage teachers in thought and discussion about both content and appropriate ways of teaching that content.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

09/01/2013

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

04/01/2018

In this study, researchers will collaborate with Baltimore City Public Schools to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the NGSS. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms.

07/15/2018

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences and serve as a starting point for supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis).

08/01/2021

The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.

09/01/2014

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

09/01/2016

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. The project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses.

08/15/2012

This project is developing principles for supporting middle school mathematics teachers' capacity to use curriculum resources to design instruction that addresses the Common Core State Standards for Mathematics. These principles are intended for: (1) curriculum developers; (2) professional development designers, to help teachers better utilize curriculum materials with respect to the CCSSM; and (3) teachers, so that they can use curriculum resources to design instruction that addresses the CCSSM.

08/15/2013

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

01/01/2016

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by NGSS to prepare middle school science teachers to implement rich computational thinking experiences within science classes.

07/01/2015

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. 

09/01/2011

This project designs materials and an accompanying support system to enable the development of expertise in the teaching of mathematics at the elementary level. The project has four main components: online professional development modules; practice-based assessments; resources for facilitators; and web-based technologies to deliver module content to diverse settings. Three modules are being developed and focus on fractions, reasoning and explanation, and geometry. Each module is organized into ten 1.5 hour sessions.

09/01/2015

The main purpose of this project is to develop instructional materials for a year-long, fifth grade curriculum for all students, including ELLs. The planned curriculum will promote language-focused and three-dimensional science learning (through blending of science and engineering practices, crosscutting concepts, and disciplinary core ideas), aligned with the Framework for K-12 Science Education, the Next Generation Science Standards, and the Conceptual Framework for Language use in the Science Classroom.

09/01/2015

The main purpose of this project is to develop instructional materials for a year-long, fifth grade curriculum for all students, including ELLs. The planned curriculum will promote language-focused and three-dimensional science learning (through blending of science and engineering practices, crosscutting concepts, and disciplinary core ideas), aligned with the Framework for K-12 Science Education, the Next Generation Science Standards, and the Conceptual Framework for Language use in the Science Classroom.

09/01/2010

This project is creating and studying a blended professional development model (face-to-face and online) for mathematics teachers and special educators (grades 4-7) with an emphasis on teaching struggling math students in the areas of fractions, decimals, and positive/negative numbers (Common Core State Standards). The model's innovative design differentiates professional learning to address teachers' wide range of prior knowledge, experiences, and interests.

08/15/2010

This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.