Effective “early” algebra interventions in elementary grades that can develop all students’ algebra readiness for later grades are needed. This study will use an experimental design to test the effectiveness of a Grades K–2 early algebra intervention when implemented in diverse classroom settings by elementary teachers. The broader impact of the study will be to deepen the role of algebra in elementary grades, provide much-needed curricular support for elementary teachers, and strengthen college and career readiness standards and practices.

# Projects

Science and engineering teaching and curriculum have begun to engage learners’ knowledge of themselves, their communities, and their experiences of science and engineering. This knowledge can make the experience of learning science and engineering more meaningful and impactful as learners can see greater connections between the content and how their own experiences and communities. However, assessment approaches for documenting and presenting what learners’ know have typically not been able to sufficiently represent the new approaches to teaching and learning. This conference brings together researchers, school leaders, and teachers to develop frameworks and resources for making culturally sustaining approaches to teaching and learning science and engineering.

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciences—the relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciences—the relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

EarthX is a design-based research project that supports the integration of Earth science into high school biology, chemistry, and physics courses in Baltimore City Public Schools, while also supporting the district’s transition to three-dimensional (3D), ambitious and equitable science teaching aligned with the *Next Generation Science Standards* (NGSS). EarthX builds on the success of the Integrating Chemistry and Earth Science (ICE) DRK-12 project, which developed innovative chemistry course curriculum materials and PD strategies, to support Earth science integration into biology and physics course curriculum development and 3D teaching. EarthX will develop, test, and refine embedded and unit assessments for all three courses, along with providing an online system for assessment administration; real-time reporting to teachers and students; and provision of data to PD leaders, administrators, and researchers for multiple purposes. Assessments will be 3D, featuring core concepts from both Earth science and the course discipline combined with a science or engineering practice and a crosscutting concept.

This project examines the effect of an assessment system that automatically generates feedback based on students’ open-ended assessment responses in chemistry and physics consistent with a previously-developed learning progression that describes the successively more complex understandings students can develop about electrical interactions. The scoring system will provide individualized feedback to students and class summaries to their teachers.

This project focuses on developing the Adapted Measure of Math Engagement (AM-ME), a culturally sustaining self-report measure of Black and Latina/o middle school students’ mathematics engagement. By developing a measure of mathematics engagement that centers Black and Latina/o students’ experiences, this project offers insight into creating inclusive mathematics learning environments and culturally sustaining understandings of what it means to be engaged in mathematics.

This project focuses on developing the Adapted Measure of Math Engagement (AM-ME), a culturally sustaining self-report measure of Black and Latina/o middle school students’ mathematics engagement. By developing a measure of mathematics engagement that centers Black and Latina/o students’ experiences, this project offers insight into creating inclusive mathematics learning environments and culturally sustaining understandings of what it means to be engaged in mathematics.

This project will design instructional assessment materials by using an innovative and unique design approach that brings together the coherent and systematic design elements of evidence-centered design, an equity and inclusion framework for the design of science materials, and inclusive design principles for language-diverse learners. Using this three-pronged approach, this project will develop a suite of NGSS aligned formative assessment tasks for first-grade science and a set of instructional materials to support teachers as they administer the formative assessments to students with diverse language skills and capacities.

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.

CADRE is the resource network that supports researchers and developers who participate in DRK-12 projects on teaching and learning in the science, technology, engineering and mathematics disciplines. CADRE works with projects to strengthen and share methods, findings, results and products, helping to build collaboration around a strong portfolio of STEM education resources, models and technologies. CADRE raises external audiences’ awareness and understanding of the DRK-12 program, and builds new knowledge.

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

This project explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics.

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

This project will develop and test a web-based platform to increase the quality of teacher-administered tests in science classrooms. It draws on classroom teacher knowledge while employing the rigorous statistical methods used in standardized assessment creation and validation. The content focus is on the disciplinary core ideas for grades 6-8 physical science in the Next Generation Science Standards (NGSS).

The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes.

This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies.

The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.

This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices.