Projects

08/01/2019

This project will study a model of pre-service teacher preparation that is designed to to increase teachers' and students' skills and confidence with computational thinking and develop teachers as designers of inclusive learning environments to promote computational thinking. The project will engage elementary (grades K-5) pre-service teachers (who are concurrently involved in school-based teacher preparation programs) as facilitators in an existing family technology program called Family Creative Learning (FCL).

08/01/2019

This project seeks to strengthen statistics and data science instruction in grades 6–12 through the design and implementation of an online professional learning environment for teachers. In partnership with RTI International, the InSTEP project designed and launched instepwithdata.org, an online professional learning platform that supports in-service teachers in developing both deeper content knowledge in statistics and the pedagogical expertise needed to teach statistics and data science effectively in their classrooms.

InSTEP is intentionally designed as a flexible professional learning experience with no fixed sequence of completing activities and modules. Teachers can chart their own learning pathways, engaging with selected resources or the full collection of materials based on their interests and needs. This flexibility allows educators to work at their own pace while deepening their understanding of key aspects of classroom practice, including selecting meaningful data and statistics tasks, facilitating rich classroom discourse, and making thoughtful choices about technology tools. 

InSTEP provides two primary types of learning experiences:

Self-Paced Modules. These modules support focused exploration of 7 individual dimensions, helping teachers strengthen both their statistical content knowledge and instructional practice. Together the 7 interconnected dimensions characterize effective learning environments for teaching data science and statistics, as shown in the accompanying diagram. As of January 2026, the platform includes 15 modules spanning the seven dimensions.

A diagram of a diagram</p>
<p>AI-generated content may be incorrect.

Data Investigations. These inquiry-oriented experiences immerse teachers in working with real-world, multivariate datasets using data visualization tools. Each investigation is situated in an authentic context and engages teachers in core Data and Statistical Practices and Central Statistical Ideas. Investigations are organized around the Data Investigation Process (Lee et al., 2022), represented in the puzzle-piece figure. As of January 2026, there are six investigations available.

Hexagon shaped figure formed by interlocking puzzle pieces. Starting at the top we have a puzzle piece labeled Frame Problem, moving clockwise, next is a  puzzle piece labeled Consider & Gather data, next is a puzzle piece labeled Process data. At the bottom is a puzzle piece labeled Explore & Visualize Data, next is a puzzle piece labeled Consider Models, and, lastly, a puzzle piece labeled Communicate & Propose Action. These phases are represented with puzzle pieces that fit together to show phases rely on each where the process could be linear or nonlinear.

 

08/01/2019

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

07/15/2019

This purpose of this project is to develop and validate a range of assessments with a focus on academic preparedness for higher education. The team will explore relevant qualities of assessments such as their differential predictive validity to ensure they are appropriate for underrepresented groups, the optimal grade level to begin assessing readiness, and measures that are most appropriate for predicting STEM-specific readiness.

07/01/2019

This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.

07/01/2019

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

07/01/2019

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

04/01/2019

This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The project will integrate engineering design, technology and society, electrical knowledge, and computer science to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.

09/15/2018

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions.

09/01/2018

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

09/01/2018

This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

09/01/2018

This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.

09/01/2018

The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/01/2018

This project is developing and studying high school curriculum modules that integrate social justice topics with statistical data investigations to promote skills and interest in data science among underrepresented groups in STEM.

10/01/2017

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

09/01/2017

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically.

09/01/2017

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

09/01/2017

This proposal will develop and test an open-access, online system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms.

08/01/2017

The project team will conduct an efficacy study of a new comprehensive science curriculum for middle grades 6-8 called Amplify Science Middle School (ASMS). This school science curriculum integrates disciplinary core ideas, science and engineering practices, and crosscutting concepts. The overarching aim of the study will be to understand the impact of the curriculum on student achievement, classroom implementation, and teacher practice in relation to the recommendations of "A Framework for K-12 Science Education" and the Next Generation of Science Standards.

07/01/2017

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.