Projects

09/15/2009

This project provides visionary leadership to the education community by (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and (b) recommending policy positions and actions by funding agencies and STEM educators regarding the development and implementation of STEM school curricula.

09/15/2009

This project is developing and testing a prototype electronic teacher's guide for a 12-week genetics unit in the NSF-funded curriculum titled Foundation Science: Biology to determine how it impacts high school teachers' learning and practice. The electronic guide, which is based on an existing print guide, has a flexible design so that it anticipates and meets the curriculum planning and support needs of teachers with different knowledge/skills profiles.

09/15/2009

This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.

10/01/2009

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

10/01/2009

This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools. 

02/15/2010

The goal of this project is to improve the quality of middle school science in a select number of schools and to gain insight into effective science professional development practice more generally. The project will focus on the following objectives: (1) increasing the quantity and quality of inquiry-based instruction; (2) facilitating the development and implementation of inquiry-based instruction; and (3) improving student achievement in middle school science classrooms.

07/01/2010

This project is developing and testing a set of 12 curriculum modules designed to engage high school students and their teachers in the process of applying computational concepts and methods to problem solving in a variety of scientific contexts. The project perspective is that computational thinking can be usefully thought of as a specialized form of mathematical modeling.

07/15/2010

This project will synthesize existing literature on modeling-based instruction (MBI) in K-12 science education over the last three decades. It will rigorously code and examine the literature to conceptualize the landscape of the theoretical frameworks of MBI approaches, identify the effective design features of modeling-based learning environments with an emphasis on technology-enhanced ones, and identify the most effective MBI practices that are associated with successful student learning through a meta-analysis.

08/01/2010

This project will explore how new mobile and web-based technologies can support content-rich nomadic inquiry; that is, science inquiry that takes place on-the-go, across integrated K-12 formal and informal settings. Students will begin the inquiry process in the classroom using curricular activities and the Zydeco web software developed in the project to help define goals and questions and to design data collection strategies and categories for use on a field trip to an informal setting.

08/01/2010

This project develops and assesses the effectiveness of integrating three computation-based technologies into curricular modules: agent-based modeling (ABM), real-world sensing, and collaborative classroom networks. The STEM disciplines addressed are life sciences and physical sciences at middle and high school levels, specifically Evolution, Population Biology/Ecology, Kinetic Molecular Theory, and Electromagnetism.

08/15/2010

The project designs and implements technologies that combine artificial intelligence in the form of intelligent tutoring systems with multimedia interfaces (i.e., an electronic science notebook and virtual labs) to support children in grades 4-5 learning science. The students use LEONARDO's intelligent virtual science notebooks to create and experiment with interactive models of physical phenomena.

08/15/2010

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics?

08/15/2010

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

08/15/2010

Twelve fifth and sixth grade science teacher specialists and their students in a high needs district in Ohio are engaged in a design-based research project within a three-year professional development effort with faculty in several departments at the University of Cincinnati to study how the engineering design process can be used effectively as a pedagogical strategy in science instruction to improve student interest, learning and skill development.

08/15/2010

This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.

08/15/2010

This project develops a series of interactive on-line games and investigates the effect these games have on increasing middle school science students' and teachers' knowledge and skills of scientific argumentation. There are four areas of argumentation addressed by the games: (1) understanding a claim, (2) judging the evidence about a claim based on type and quality (objectivity, reliability or validity), (3) analyzing the reasoning applied to the claim, and (4) evaluating the claim.

08/15/2010

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

08/15/2010

This research and development project develops and tests in the classroom three fifth-grade and two second-grade science units that combine both socio-cultural and socio-cognitive perspectives in order to more fully engage both students and teachers in authentic inquiry and tests the units in second- and fifth-grade classrooms.

08/15/2010

The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education that for over forty years introduce science, mathematics and engineering to students traditionally underrepresented in the discipline. This project examines the influences MESA activities (field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement) have on students' perception of engineering, their self-efficacy and interest in engineering, and their subsequent decisions to pursue careers in engineering.

08/15/2010

This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.

09/01/2010

This project transforms an already-useful curriculum to reach a wider population of students and teachers. The curriculum effectively builds on a base of core science and math concepts to bring important current science to high school, using a case-based approach that incorporates authentic scientific inquiry. The Biocomplexity and the Habitable Planet curriculum is designed to provide material for a year-long capstone course in ecology and environmental science, or two individual modules for semester-long electives.

09/01/2010

This project is a collaborative effort that aims to develop a grade 3-5 Learning Progression that will provide a coherent approach to teaching energy in elementary school and lay a strong foundation for further learning in middle school. The project will identify a network of core concepts and principles about energy that are fundamental and general enough to be compatible with scientific ideas about energy, yet within reach of 5th graders.

09/01/2010

This project integrates American Sign Language (ASL) into the life and physical sciences content of 9th-12th grade deaf or hard-of-hearing students. Project partners incorporate the use of the assistive technology in order to develop, research, and disseminate two interactive 3D dictionaries: Signing Life Science Dictionary (SLSD), and Signing Physical Science Dictionary (SPSD) with audio modes and approximately 750 standards-based terms in English and Spanish text that can be signed or listened to on demand.

09/01/2010

This synthesis project is a systematic review of experimental research evaluating programs and practices in elementary science. The systematic review addresses all areas of science in the elementary grades. The review uses an adaptation of best-evidence synthesis previously applied to elementary and secondary mathematics and reading, and includes experimental and quasi-experimental research on the outcomes of alternative approaches to elementary science.

09/01/2010

This project will develop three replacement units for biology and refine them through classroom testing. The units will be models of STEM integration by using the important concepts of proportional reasoning and algebraic thinking and engineering re-design to address big ideas in science while also promoting the learning of 21st century skills. The materials will be educative for teachers, and the teacher materials and professional development methods will work at scale and distance.