This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.
Projects
This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. This award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction.
The goal of this project will be to provide the field with a cost-effective model for intense content-based professional development in ways that have not been possible before, except through costly face-to-face models, by creating and testing design principles for blended online courses. Team members will design, implement, and research the effects of a professional development immersion experience in mathematics for practicing secondary teachers (grades 7-12).
The goal of this project will be to provide the field with a cost-effective model for intense content-based professional development in ways that have not been possible before, except through costly face-to-face models, by creating and testing design principles for blended online courses. Team members will design, implement, and research the effects of a professional development immersion experience in mathematics for practicing secondary teachers (grades 7-12).
This project seeks to identify teaching practices that can be linked to students' early algebra learning in grades three, four and five. The goal of the project is to use assessment data and videos of classroom teaching in order to create a tool that can be used to document effective instructional practices. This observation tool can then be used to support teacher professional development in early algebra and research about how teachers' actions can be linked to students' learning.
This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.
This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so.
This project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). The study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion. To do this, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project proposes an assessment study that focuses on improving existing measures of teachers' Mathematical Knowledge for Teaching (MKT). The research team will update existing measures, adding new items and aligning the instrument to new standards in school mathematics.
This project supports the expansion of an interactive, online STEM Videohall where hundreds of NSF-funded researchers share their work through brief video narratives and interactive discussion.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
The project will research the implementation of Transition to Algebra, a year-long mathematics course for underprepared ninth grade students taken concurrently with Algebra 1 to provide additional support, and its impact on students' attitudes and achievement in mathematics in combination with teachers' instruction and the types of supports teachers need to successfully implement the intervention.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
This project will address the need for high quality evidence-based models, practices, and tools for high school teachers and the development of students' problem solving and analytical skills by leveraging novel research and design approaches using digital tools and two well-established online instructional platforms: Zoom In and Common Online Data Analysis Platform.
This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics. InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research and learn what it means to be a scientist.
The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish that will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures.
This project aims to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM) that will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways.
This project will explore the potential of video-based formative feedback to enhance professional development around ambitious instruction for secondary teachers in urban schools.
The project will design an assessment based on learning progressions for the concept of function - a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses.
