Projects

09/01/2013

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

07/15/2013

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

10/01/2012

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

09/15/2012

This study examines the impact of the newly revised Advanced Placement (AP) Biology and Chemistry courses on students' understanding of and ability to utilize scientific inquiry, on students' confidence in engaging in college-level material, and on students’ enrollment and persistence in college STEM majors. The project provides estimates of the impact of students' AP-course taking on their progress into postsecondary educational experiences and their intent to continue to prepare to be future engineers and scientists.

09/15/2012

This proposal leverages the re-design of the Advanced Placement (AP) curricula currently under way to study the impact of teacher professional development on student achievement in a natural experiment at scale. In addition to supporting the improvement of professional development of AP teachers by the College Board, the findings contribute to a better understanding of the relationship between professional development and student achievement more generally.

09/01/2012

In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.

09/01/2012

In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.

08/01/2012

This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.

09/01/2011

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

09/01/2011

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

09/01/2011

This project will iteratively design, develop, field test, refine, and rigorously study a six-unit, facilitated, online professional development (PD) course focusing on energy-related concepts in the context of alternative energy. The primary audience is high school science teachers teaching out of their field of endorsement and serving students underrepresented in the sciences. The project will investigate whether the PD will precipitate changes in teacher knowledge and practice that result in higher student achievement.

09/01/2011

This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.

08/15/2011

This project scales and further tests the Target Inquiry professional development model. The model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers, and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students.

07/15/2011

This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs  

04/01/2011

This project provides a model of how existing, tested digital enhancements can increase student learning. Increasing the quality of science education requires careful coupling of effective, research-based curricula with innovative digital features that deepen and enhance science learning and teaching. This RAPID is to ensure that the content and pedagogical expertise is present during the development of the digital version of Foundation science.

09/01/2010

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through students’ understanding of scientific practice as measured by their attention to generality of explanation, clarity of communication, audience understanding, evidentiary support, and mechanistic versus descriptive accounts.

09/01/2010

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

09/01/2009

This project is exploring how curricula and assessment using dynamic, interactive scientific visualizations of complex phenomena can ensure that all students learn significant science content. Dynamic visualizations provide an alternative pathway for students to understand science concepts, which can be exploited to increase the accessibility of a range of important science concepts. Computer technologies offer unprecedented opportunities to design curricula and assessments using visual technologies and to explore them in research, teaching, and learning.

09/01/2009

This project is developing, validating, and evaluating computer modeling-based formative assessments to improve student learning in chemistry. Activities include developing a series of computer models related to key topics in high school chemistry, developing questions to probe student understanding of matter and energy, identifying teaching and learning resources appropriate for different levels of student conceptual understanding, and developing professional development resources on integrating formative assessments into high school chemistry courses.

09/01/2009

The overriding goal of this project is to strengthen the “T” and “E” components of STEM in high school courses taken by a majority of students. Our hypothesis is that increasing the presence of engineering and technological design at the high school level, specifically by incorporating engineering activities in high school biology and chemistry classes, will improve students’ understanding of science concepts and strengthen students’ 21st century skills more than traditional methods.

09/01/2009

This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).

08/15/2009

SmartGraphs activities run in a web browser; there is no software to download or install. SmartGraphs allows students to interact with on-screen graphs to learn about linear equations, the motion of objects, population dynamics, global warming, or other STEM topics that use scatter plots or line graphs. Teachers and students may also use and share existing activities, which are released under a Creative Commons license (see http://www.concord.org/projects/smartgraphs#curriculum).

09/15/2008

A principled framework is created for the development of learning progressions in science that can demonstrate how their use can transform the way researchers, educators and curriculum developers conceptualize important scientific constructs. Using the construct of transformation of matter, which requires understanding of both discrete learning goals and also the connections between them, a hypothetical learning progression is constructed for grades 5-12.

07/15/2008

This project provides support for a two-day workshop that would bring about 60 participants together to discuss the issues, challenges and opportunities in "Materials Education" and devise strategies for synergizing all stakeholders involved for further progress. Discussions will be focused on 4 topics: (1) Educating the public about the relevance of materials research; (2) Materials education for K-12 students and teachers; (3) Revolutionizing undergraduate education toward flexible curriculum; (4) Materials education for graduate students.

01/01/2008

This project supports five graduate students with backgrounds in the natural and learning sciences as they achieve masters-level expertise in a science discipline and pursue coursework and complete dissertations in science education research. The program prepares them to 1) collaborate with educational and developmental psychologists and discipline-based science education researchers, and 2) to develop and teach courses that break down the traditional barriers between science teaching methods courses and science content courses for teachers.