This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.
Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Baker)
The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.
Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.