Post-secondary Faculty

Engineering for All (EfA)

This project creates, tests and revises two-six week prototypical modules for middle school technology education classes, using the unifying themes and important social contexts of food and water. The modules employ engineering design as the core pedagogy and integrate content and practices from the standards for college and career readiness.

Lead Organization(s): 
Award Number: 
1316601
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

The Engineering for All project creates, tests and revises two-six week prototypical modules for middle school technology education classes, using the unifying themes and important social contexts of food and water. The modules employ engineering design as the core pedagogy and integrate content and practices from the standards for college and career readiness. Embedded assessments are developed and tested to make student learning visible to both teachers and students. Professional development for a limited group of teachers is used to increase their knowledge of engineering design and to test instruments being developed to measure (a) student and teacher capacity to employ informed design practices and (b) teacher design pedagogical content knowledge.

The project leadership is experienced at creating materials for engineering and technology and in providing professional development for teachers. The assessments and instruments are created by educational researchers. The advisory board includes engineers, science and engineering educators, and educational researchers to guide the development of the modules, the assessments and the instruments. An external evaluator reviews the protocols and their implementation.

This project has the potential to provide exemplary materials and assessments for engineering/technology education that address standards, change teacher practice, and increase the capacity of the engineering/technology education community to do research.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

Misconceptions Oriented Standards-Based Assessment Resource for Teachers of High School Life Science (MOSART HSLS)

This project is developing and validating an assessment instrument that addresses the life sciences for students and teachers in grades 9 through 12 based on the Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART).

Lead Organization(s): 
Award Number: 
1316645
Funding Period: 
Sun, 09/01/2013 to Thu, 08/31/2017
Full Description: 

Researchers in the Harvard Smithsonian Center for Astrophysics are developing and validating an assessment instrument that addresses the life sciences for students and teachers in grades 9 through 12 based on the Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART). The project is developing 400 new test items that are based on core content domains for life science and are aligning these items with the previous National Science Education Standards to provide a connection to the earlier MOSART assessments. The project is also developing and validating two test instruments that address the cross cutting concepts of energy and matter for grades K-12, with a specific focus on flows, cycles and conservation. The new assessments will be made available to other researchers and practitioner through the project website and their on-line assessment system.

The assessment development is based on the process used in prior work that has produced the other MOSART instruments, including design efforts of assessment specialists, teachers, and learning scientists. Pilot items are tested through crowd-sourcing with online adult test takers. Classic test theory techniques, item response theory and Bayesian techniques model the student responses. Outcomes consist of item parameters, test and sub-test characteristics, and predictive linkages among items. A stratified, nationally representative sample of 250 high school biology teachers field test the items with classrooms of students. Descriptive statistics are generated to establish the state of student knowledge, pre-and post-test performance by item and by standard, and teacher knowledge, including the fraction of items for which teachers have correctly identified the most popular wrong answer. Descriptive analyses are followed by hierarchical linear modeling (HLM) of students within classrooms to examine the relationships between student and teacher knowledge. The dependent variables in HLM are student gain scores. Independent variables include teachers' knowledge, and student performance on grade K-8 assessments.

The MOSART instruments have been a strong line of assessment tools that are based on a model of cognition with a strong research base in misconceptions in science education. That research base is only slowly being augmented with a more coherent framework on learning progressions in STEM education, and the MOSART instruments will have the potential for extensive use for the foreseeable future. The grades 9-12 life science instrument based on coupling core ideas with science and engineering practices addresses the gaps in the current MOSART system of assessments. Given the rich literature on misconceptions in life science and the ubiquity of life science as a course at the high school level, the instrument promises to be as useful as the one for K-8 developed with MSP RETA funding. The new instruments on cross-cutting concepts provides a much needed set of assessments for researchers and practitioners, particularly teacher professional development providers. The transition to coupling core content and sciences practices with both the life sciences and the cross-cutting concepts is an opportunity to expand and update the suite of instruments.

Undergraduate Biology Education Research Program

The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

Award Number: 
1262715
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

The Undergraduate Biology Education Research (UBER) REU Site engages undergraduates in studying important issues specific to the teaching and learning of biology, with mentorship from faculty in the Division of Biological Sciences and the Mathematics and Science Education Department at the University of Georgia. The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research by strategically recruiting and mentoring underrepresented and disadvantaged students, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

A programmatic effort to introduce undergraduates to the discipline of biology education research is unprecedented nationwide. Biology education research as a discipline is quite young, and systematic involvement of undergraduates has not been part of the culture or practice in biology or education. UBER aims to promote cultural change that expands the involvement of undergraduates in biology education research and raises awareness among undergraduates that biology teaching and learning are compelling foci for study that can be pursued at the graduate level and via various career paths. UBER utilizes a combined strategy of broad and strategic recruiting to attract underrepresented minority students as well as students who do not have access to biology education research opportunities at their own institutions. Evaluation plans involve tracking UBER participants over time to understand the trajectories of students who complete undergraduate training in biology education research.

Significant co-funding of this project is provided by the Division of Biological Infrastructure in the NSF Directorate for Biological Sciences in recognition of the importance of educational research in the discipline of biology. The Division of Undergraduate Education and the Division of Research on Learning in Formal and Informal Settings also provides co-funding.

Developing Rich Media-Based Materials for Practice-Based Teacher Education

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

Award Number: 
1316241
Funding Period: 
Thu, 08/15/2013 to Tue, 07/31/2018
Full Description: 

The 4-year research and development project, Developing Rich Media-based Materials for Practice-based Teacher Education, is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom. Furthermore, teacher educators and teachers can react to such animations or image sequences by making their own depictions of alternative moves by students or teachers in classroom interaction. And all of that can take place in an on-line, cloud-based environment that also supports discussion fora, questionnaires, and the kinds of capabilities associated with learning management systems. Such technologies offer important affordances to teacher educators seeking to provide candidates with course-based experiences that emphasize the development of practice-based skills. The focus of the project is on mathematics teacher education. This joint project of the University of Maryland Center for Mathematics Education and the University of Michigan will produce 6 to 8 field-tested modules for use in different courses that are a part of mathematics teacher preparation programs. The following two-pronged research question will be resolved: What are the affordances and constraints of the modules and the environment as supports for: (1) practice based teacher education and (2) a shift toward blended teacher education?

The project involves the following activities: (1) a teacher education materials development component; (2) a related evaluation component; and (3) two research components. The development phase seeks to develop both the LessonSketch.org platform and six to eight mathematics teacher education modules for use in preservice teacher education programs from around the country. The modules will be written with practice-based teacher education goals in mind and will use the capacities of the LessonSketch.org platform as a vehicle for using rich-media artifacts of teaching with preservice teacher candidates. LessonSketch Teacher Education Research and Development Fellows will be chosen through a competitive application process. They will develop their respective modules along with teams of colleagues that will be recruited to form their inquiry group and pilot the module activities. The evaluation activity will focus on the materials development aspect of the project. Data will be collected by the LessonSketch platform, which includes interviews with Fellows and their teams, perspectives of module writers, descriptive statistics of module use, and feedback from both teacher educator and preservice teacher end-users about the quality of their experiences. The first research activity of the project is design research on the kinds of technological infrastructure that are useful for practice-based teacher education. The PIs will identify tools that teacher educators need and want beyond the current capabilities for web-based support for use of rich media and will produce prototype tools inside the LessonSketch environment to meet these needs. The second research activity of the project will supplement the evaluation activity by examining the implementation of two of the modules in detail. This aspect of the research will examine the goals of the intended curriculum, the proposed modes of media use, the fidelity of the implemented curriculum, and learnings produced by preservice teachers. This research activity will help the field understand the degree to which practice-based teacher education that is mediated by an online access to rich media would be a kind of practice that could be easily incorporated into existing teacher education structures.

The project will produce 6 to 8 LessonSketch modules for use in teacher education classes. Each module will be implemented in at least eight teacher education classes across the country, which means that between 720 and 960 preservice teacher candidates will study the materials. The project aims to shift the field toward practice-based teacher education by supporting university programs to implement classroom-driven activities that will produce mathematics teachers with strong capabilities to teach mathematics effectively and meaningfully.

Enhancing Teaching and Learning with Social Media: Supporting Teacher Professional Learning and Student Scientific Argumentation

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards.

Award Number: 
1316799
Funding Period: 
Thu, 08/01/2013 to Mon, 07/31/2017
Full Description: 

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards. Participants include a team of ninth and tenth grade Life Science teachers collaborating as co-researchers with project staff in a design study to develop one socially mediated science unit. It also produces strategies, tools and on-line materials to support teachers' development of the pedagogical, content, and technological knowledge needed to integrate emerging technologies into science instruction. This project focuses on the flexible social media sites such as Facebook, Twitter and Instagram that students frequently use in their everyday lives. Research questions explore the technology of social media and the pedagogy needed to support student engagement in scientific argumentation. The Year Three pilot analyses provide data on the professional learning model. The project provides a basis for scale-up with this instructional and professional learning model to other core science content, cross-cutting themes, and STEM practices.

From Undergraduate STEM Major to Enacting the NGSS

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1317059
Funding Period: 
Thu, 08/01/2013 to Fri, 07/31/2015
Full Description: 

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops. Workshop sessions integrate crosscutting concepts, scientific practices, and engineering design as articulated in the Framework for K-12 Science Education (NRC, 2012). Infusing the Frameworks into the workshop helps STEM faculty better understand their role in preparing future K-12 teachers to implement the new standards, by transforming their own undergraduate courses in ways that actively engage students in modeling, argumentation, making claims from evidence, and engineering design. The National Science Foundation (NSF), the Howard Hughes Medical Institute (HHMI), the American Physical Society's PhysTEC project, and University of Colorado-Boulder, provide resources for national workshops in 2013 and 2014 allowing 80 additional math, science, and engineering faculty from a range of institutions to directly experience the LA model and to learn ways to implement, adapt, grow, and sustain a program on their own campuses. Evaluation of the project focuses on long-term effects of workshop participation and contributes to efforts to strengthen networks within the international Learning Assistant Alliance. The launching of 10 - 12 new LA programs is anticipated, and many existing programs will expand into new STEM departments as a result of the national workshops.

Workshop participants are awarded travel grants and in return, provide data each year for two years so that long-term impacts of the workshop can be evaluated. Online surveys provide data about each institution's progress in setting up a program, departments in which the program runs, number of faculty involved, number of courses transformed, numbers of teachers recruited, and estimated number of students impacted. These data provide correlations between workshop attendance and new program development, and allow the computation of national cost per impacted student as well as the average cost per STEM teacher recruited. Anonymous data are made available to International Learning Assistant Alliance partners to promote collaborative research and materials development across sites.

The 2013 and 2014 national workshops train eight faculty members who have experience running LA programs to offer regional workshops for local university and community college faculty members. This provides even greater potential for teacher recruitment and preparation through the LA model and for data collection from diverse institutions. This two-year project has potential to support 320 math, science, and engineering faculty as they transform their undergraduate courses in ways consistent with the Frameworks, in turn affording tens of thousands of undergraduate students (and hundreds of future teachers) more and better opportunities to engage with each other and with STEM content through the use of scientific and engineering practices. STEM faculty who participate in what appears to be an easy to adopt process of course transformation through the LA model, become more aware of issues in educational diversity, equity, and access leading to fundamental transformations in the way education is done in a department and at an institution, ultimately leading to sustained policy changes and shared vision of equitable, quality education.

Pages

Subscribe to Post-secondary Faculty