Post-secondary Faculty

Workshop for Writing Grants for Early Career Scholars in STEM and Learning Sciences Focused on Racial Equity

This project focuses on supporting emerging scholars who have new ideas and approaches for approaching racial equity in their scholarship and work. The workshop, implemented as a series of sessions over the course of a year, will support early career scholars in STEM education and the learning sciences in preparing proposals to submit to the National Science Foundation.

Lead Organization(s): 
Award Number: 
2133577
Funding Period: 
Wed, 09/01/2021 to Wed, 08/31/2022
Full Description: 

Persistent racial injustices and inequities in the United States and in STEM fields underscore the need for creative, research-based approaches to address these concerns. In particular, creative approaches are needed for studying and addressing racial injustices and inequities in STEM education, where racial equity and STEM learning are both given careful and thoughtful consideration. This project focuses on supporting emerging scholars who have new ideas and approaches for approaching racial equity in their scholarship and work. This workshop, implemented as a series of sessions over the course of a year, will support early career scholars in STEM education and the learning sciences in preparing proposals to submit to the National Science Foundation. The workshop is designed to serve scholars who are within five years of obtaining their PhD and who have never before been principal investigator or co-principal investigator of a federally-funded grant. Participants will include early career scholars who focus their work on racial equity. Too often, such scholars have indicated that they have received little to no training on writing grant proposals.

Ten participants will be supported by the project through a year-long series of workshops that include different aspects of the grant writing process including reading through a solicitation, writing a narrative, and creating a budget. In addition to these workshop sessions, the project approach also considers the importance of a professional network and of mentoring, informed by a Communities of Practice theoretical framework and existing research on mentoring practices. As such, each early career scholar will be paired with a senior mentor in the field whose work is aligned with the mentee's. The outcomes of the workshop for early career scholars will include a complete or nearly complete proposal that is aligned with one of the programs within the NSF's Division of Research on Learning. The workshop will highlight strategies for developing CAREER proposals along with considerations for preparing proposals for other programs. More generally, the workshop will create a model for supporting and mentoring early career scholars in proposing STEM education projects centered in racial equity work and will be able to identify areas of need for successful grant proposal writing. All workshop materials will be made freely available to the general public.

Investigating Barriers and Strategies to Increase HBCU Participation in STEM Education Research

This project will investigate the challenges, needs, and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF), in particular the Division of Research on Learning in Informal and Formal Settings (DRL). The project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs.

Lead Organization(s): 
Award Number: 
2131762
Funding Period: 
Sun, 08/15/2021 to Mon, 07/31/2023
Full Description: 

HBCUs are critical to producing a diverse and inclusive workforce as they graduate a disproportionate number of African American future STEM workers and STEM leaders. Although the National Science Foundation is fully committed to diversity and inclusion, there has been little research to determine why Historically Black Colleges and Universities are not fully participating in the NSF STEM educational research opportunities. The project will investigate the challenges, needs and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF). Participants will be recruited from 96 HBCUs that are eligible to apply for such funding and will include the wide range of college and university administration and faculty that are involved in the preparation of research projects and related applications for research funding. The investigation will focus primarily on the Division of Research on Learning in Informal and Formal Settings (DRL) within NSF. The investigation will: 1) determine the submission rate and funding success rate of HBCUs within the DRL funding mechanisms; 2) determine why a greater proportion of HBCUs are not successful in their applications of research or do not apply; and 3) determine what factors, such as institutional support, research expertise, and professional development, could lead to a larger number of research proposals from HBCUs and greater success in obtaining funding. The project has the potential to have significant influence on the national educational and research agenda by providing empirical findings on the best approach to support and encourage HBCU participation in DRL educational research funding programs.

This exploratory research project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs. The project has the following research questions: (1) What factors discourage participation of HBCUs in the DRL funding mechanisms and what are the best practices to encourage participation? (2) What approaches have been successful for HBCUs to obtain DRL funding? (3) What dynamic capabilities are necessary for HBCU researchers to successfully submit STEM proposals to NSF? (4) What changes would be helpful to reduce or eliminate any barriers for HBCU applications for DRL educational research funding and what supports, such as professional development, would contribute to greater success in obtaining funding? Participants will be recruited from the 96 eligible HBCUs and will include both individuals from within the administration (e.g., Office Sponsored Programs, Deans, VP, etc.) as well as from within the faculty. The research will collect variety of quantitative and qualitative data designed to support a comprehensive analysis of factors addressing the research questions. The project will develop research findings and recommendations that are relevant to faculty, administrators, and policymakers for improving HBCU participation in research funding opportunities. Results of project research will be widely disseminated to HBCUs and other Minority Serving Institutions (MSIs) through a project website, peer reviewed journals, newsletters, and conference presentations.

AI-based Assessment in STEM Education Conference

The Framework for K-12 Science Education has set forth an ambitious vision for science learning by integrating disciplinary science ideas, scientific and engineering practices, and crosscutting concepts, so that students could develop competence to meet the STEM challenges of the 21st century. Achieving this vision requires transformation of assessment practices from relying on multiple-choice items to performance-based knowledge-in-use tasks.

Lead Organization(s): 
Award Number: 
2138854
Funding Period: 
Sun, 08/01/2021 to Sun, 07/31/2022
Full Description: 

The Framework for K-12 Science Education has set forth an ambitious vision for science learning by integrating disciplinary science ideas, scientific and engineering practices, and crosscutting concepts, so that students could develop competence to meet the STEM challenges of the 21st century. Achieving this vision requires transformation of assessment practices from relying on multiple-choice items to performance-based knowledge-in-use tasks. Such novel assessment tasks serve the purpose of both engaging students in using knowledge to solve problems and tracking students’ learning progression so that teachers could adjust instruction to meet students’ needs. However, these performance-based constructed-response items often prohibit timely feedback, which, in turn, has hindered science teachers from using these assessments. Artificial Intelligence (AI) has demonstrated great potential to meet this assessment challenge. To tackle this challenge, experts in assessment, AI, and science education will gather for a two-day conference at University of Georgia to generate knowledge of integrating AI in science assessment.

The conference is organized around four themes: (a) AI and Domain Specific Learning Theory; (b) AI and validity theory and assessment design principles; (c) AI and technology integration theory; and (d) AI and pedagogical theory focusing on assessment practices. It allows participants to share theoretical perspectives, empirical findings, as well as research experiences. It can also help identify challenges and future research directions to increase the broad use of AI-based assessments in science education. The conference will be open to other researchers, postdocs, and students via Zoom. It is expected that conference participants establish a network in this emergent area of science assessment. Another outcome of the conference, Applying AI in STEM Assessment, will be published as an edited volume by Harvard Education Press.

Evidence Quality and Reach Hub for the DRK-12 Community

Understanding the impact of STEM education efforts requires researchers to have cutting-edge knowledge of advanced research methods and the ability to translate research knowledge to multiple and diverse stakeholder audiences. The Evidence Quality and Reach (EQR) Hub project will work explicitly to strengthen these two competencies through focused work with the Discovery Research PreK-12 research community.

Award Number: 
2101162
Funding Period: 
Thu, 07/01/2021 to Tue, 12/31/2024
Full Description: 

Understanding the impact of STEM education efforts requires researchers to have cutting-edge knowledge of advanced research methods and the ability to translate research knowledge to multiple and diverse stakeholder audiences. The Evidence Quality and Reach (EQR) Hub project will work explicitly to strengthen these two competencies through focused work with the Discovery Research PreK-12 research community. The hub will develop and implement workshops and learning opportunities for researchers in the community, convene communities of practice to discuss specific research methods, and engage in individualized consultations with DRK-12 projects. These activities are designed to strengthen current and future work in PreK-12 STEM education research.

This project will work at multiple levels to support the DRK-12 research community. Universal activities such as webinars will be developed and deployed to support researchers in learning about new research methods and strategies for translating research for a broad set of stakeholder communities. Collective activities will involve a small number of DRK-12 projects in discussing particular research and dissemination issues common to their work in communities of practice and via virtual workshops. Individual projects will also be offered consultations on their current work. The project will begin with needs-sensing activities that will identify important themes and areas of focus for the universal, collective, and individual work. The project will collect data about the efficacy of their endeavors through surveys, user analytics from online collaboration spaces, and interviews with approximately 10 projects per year.

Improving Professional Development in Mathematics by Understanding the Mechanisms that Translate Teacher Learning into Student Learning

This project explores the mechanisms by which teachers translate what they learn from professional development into their teaching practice. The goal of this project is to study how the knowledge and skills teachers acquire during professional development (PD) translate into more conceptually oriented mathematics teaching and, in turn, into increased student learning.

Lead Organization(s): 
Award Number: 
2100617
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

A great deal is known about the effects of mathematics teacher professional development on teachers' mathematical knowledge for teaching. While some professional development programs show meaningful changes in teacher knowledge, these changes do not always translate into changes in teacher practice. This project explores the mechanisms by which teachers translate what they learn from professional development into their teaching practice. The goal of this project is to study how the knowledge and skills teachers acquire during professional development (PD) translate into more conceptually oriented mathematics teaching and, in turn, into increased student learning. The project builds on a promising video-based PD that engages teachers in analyzing videos of classroom mathematics teaching. Previous research indicates that teachers who can analyze teaching by focusing on the nature of the mathematical learning opportunities experienced by students often teach more effectively. The researchers aim to better understand the path teachers follow as they develop this professional competency and translate it into more ambitious teaching that supports richer student learning. The lack of understanding of how a PD program can reach students is a significant barrier to improving the effectiveness of PD. To build this understanding, the researchers aim to test and refine an implementation theory that specifies the obstacles teachers face as they apply their learning to their classroom teaching and the contextual supports that help teachers surmount these obstacles. Lessons learned from understanding the factors that impact the effects of PD will help educators design PD programs that maximize the translation of teacher learning into student learning.

The project will recruit and support a cohort of teachers, grades 4–5 (n=40) and grades 6–7 (n=40) for three years to trace growth in teacher learning, changes in teaching practices, and increases in student learning. The PD will be provided throughout the year for three consecutive years. The researchers will focus on two mathematics topics with a third topic assessed to measure transfer effects. Several cycles of lesson analysis will occur each year, with small grade-alike curriculum-alike groups assisted by trained coaches to help teachers translate their growing analysis skills into planning, implementing, and reflecting on their own lessons. Additional days will be allocated each year to assist the larger groups of teachers in developing pedagogical content knowledge for analyzing teaching. The research focuses on the following questions: 1) What are the relationships between teacher learning from PD, classroom teaching, and student learning, how do hypothesized mediating variables affect these relationships, and how do these relationships change as teachers become more competent at analyzing teaching?; and 2) How do teachers describe the obstacles and supports they believe affect their learning and teaching, and how do these obstacles and supports deepen and broaden the implementation theory? Multi-level modeling will be used to address the first question, taking into account for the nested nature of the data, in order to test a model that hypothesizes direct and indirect relationships between teacher learning and teaching practice and, in turn, teaching practice and student learning. Teachers will take assessments each year, for each mathematics topic, on the analysis of teaching skills, on the use of teaching practices, and on students’ learning. Cluster analysis will be used to explore the extent to which the relationship between learning to analyze the mathematics of a lesson, teaching quality, and student achievement may be different for different teachers based on measured characteristics. Longitudinal analysis will be used to examine the theoretical relationships among variables in the hypothesized path model. Teachers’ mathematical knowledge for teaching, lesson planning, and textbook curricular material use will be examined as possible mediating variables between teacher learning and teaching practice. To address the second research question, participants will engage in annual interviews about the factors they are obstacles to doing this work and about the supports within and outside of the PD that ameliorate these obstacles. Quantitative analyses will test the relationships between the obstacles and supports with teacher learning and classroom teaching. Through qualitative analyses, the obstacles and supports to translating professional learning into practice will be further articulated. These obstacles and supports, along with the professional development model, will be disseminated to the field.

Anchoring High School Students in Real-Life Issues that Integrate STEM Content and Literacy

Through the integration of STEM content and literacy, this project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue.

Lead Organization(s): 
Award Number: 
2010312
Funding Period: 
Sat, 08/15/2020 to Sun, 07/31/2022
Full Description: 

The STEM Literacy Project sets out to support student learning through developing teacher expertise in collaborative integration of STEM in student writing and literacy skills development. Facilitated by teachers, students will read, discuss, and then write about real-world STEM scenarios, such as water quality or health. The project will build on and research a professional development program first developed through a state-supported literacy program for middle and high school science and math teachers to improve literacy-integrated instruction. The goals of this project include the following: (1) Create a community of practice that recognizes high school teachers as content experts; (2) Implement high quality professional development for teachers on STEM/Literacy integration; (3) Develop assessments based on STEM and literacy standards that inform instruction; and (4) Conduct rigorous research to understand the impact of the professional development. The program is aligned with state and national standards for college and career readiness. Project resources will be widely shared through a regularly updated project website (stemliteracyproject.org), conference presentations, and publications reaching researchers, developers, and educators. These resources will include scenario-based assessment tools and instructional materials.

Through the integration of STEM content and literacy, the project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue. These scenarios provide students with agency as they craft an argument for an audience, such as presenting to a city council, a school board, or another group of stakeholders. Project research will use a mixed methods design. Based on the work completed through the initial designs and development of scenario-based assessments, rubrics, and scoring processes, the project will study the impact on instruction and student learning. Using a triangulation design convergence model, findings will be compared and contrasted in order for the data to inform one another and lead to further interpretation of the data. project will analyze the features of STEM content learning after program-related instruction. Data collected will include pre-post student scenario-based writing; pre-post interviews of up to 40 students each year; pre-post teacher interviews; and teacher-created scenario-based assessments and supporting instructional materials. Student learning reflected in the assessments paired with student and teacher interview responses will provide a deeper understanding of this approach of integrating STEM and literacy. The use of discourse analysis methods will allow growth in content learning to be measured through language use. Project research will build knowledge in the field concerning how participation in teacher professional development integrating STEM content in literacy practices impacts teacher practices and student learning.

Science Education Campaign for Research, Equity, and Teaching: A Working Conference

The purposes of this conference are to organize scholarly work about equity in science education and to broaden the set of scholars in science education who have equity as a focus.

Lead Organization(s): 
Award Number: 
2029956
Funding Period: 
Sat, 08/01/2020 to Sun, 07/31/2022
Full Description: 

The purposes of this conference are to organize scholarly work about equity in science education and to broaden the set of scholars in science education who have equity as a focus. Equity has become a niche focus for many science education scholars, but the idea that science education should reach all students should be fundamental to all high quality teaching and learning. Scholars have documented policies and strategies that expand the diversity of individuals engaging in science. In turn, practitioners have incorporated these advances into science classroom practice. Better science learning opportunities can occur without diminishing expectations. However, many important projects are only known to local participants and a few outsiders. The conference will gather these scattered materials into a centralized collection. Producing consensus documents about equity-centered science education will provide a common body of knowledge. Having these shared referents will help to consolidate and coordinate research activity. Such documents will also have value for science education stakeholders engaged in professional development, policy enactments, and instructional reforms. The second purpose of this project is to plan for sustaining these efforts beyond the time of the conference. Because of current societal and educational dynamics, it is important to be strategic and planful about subsequent and synchronized ventures within an ongoing campaign for equity centered science education.

Demographical and institutional shifts make it necessary to attend to inequities within science education. Disparities by race and ethnicity are troublingly persistent in terms of representation in science careers, of college students majoring in science and engineering, by secondary school enrollments in advanced science courses, and in K-12 student outcomes on measures of science achievement. Such patterns are often reduced to deficit thinking about human potential. Deficit explanations are related to biased expectations by classroom teachers, inappropriate course tracking practices within secondary schools, uneven attention and support by college advisors and university faculty, and hostile work environments throughout academic and corporate STEM settings. In contrast, introducing asset mindsets about marginalized populations has the potential to contradict biased views about who can and cannot be successful in science. This project is creating a multifaceted mentoring initiative to assist scholars with maximizing impacts and sustaining themselves within their chosen professions. Among participants, there is considerable variety of career trajectories and depth of experiences. This diversity is creating a robust network of scholars from fields adjacent to science education: organizational change, school counseling, teacher leadership, technology education, and urban schooling. The conference is providing support mechanisms to increase scholars' human capital through an organizational infrastructure to foster the professional community's continued growth. Activities subsequent to this conference are continuing to support this community, maintaining equity at its core rather than an auxiliary feature of scholarship in science education.

Co-learning Math Teaching Project: Collaborative Structures to Support Learning to Teach across the Professional Teaching Continuum

This project will design and study an innovative model of collaborative learning for pre-service and experienced secondary mathematics teachers that focuses on equitable mathematics teaching practices that include understanding students' knowledge, math understandings, and experiences they bring to the classroom.

Lead Organization(s): 
Award Number: 
2010634
Funding Period: 
Sun, 11/01/2020 to Thu, 10/31/2024
Full Description: 

An ongoing challenge for the preparation of new mathematics teachers is creating quality experiences in classrooms for student teaching. The project will design and study an innovative model of collaborative learning for pre-service and experienced secondary mathematics teachers. Multiple pre-service teachers will collaborate in the same secondary mathematics teacher's classroom for their field placements. The partnership between the school and the university will allow for professional development for the pre-service teachers and the experienced teachers. A particular focus of the project will be equity in mathematics teaching and learning. Developing equitable mathematics teaching practices includes better understanding students' knowledge, math understandings, and experiences they bring to the classroom. Improving the student teaching experience may improve retention in the teaching profession and help pre-service teachers be better prepared for their first years of teaching.

This is an exploratory project about mathematics teaching and teacher development in field experiences for pre-service teachers. The project introduces collaborative learning structures for pre-service teacher education that focus on equitable mathematics teaching practices. The collaborative learning structures include both the cooperating teacher and multiple pre-service teachers working in the same classroom. The project will use a design-based research model to systematically study the process of co-learning and the critical features of collaborative learning structures as they are designed to support co-learning between novice and experienced teachers. Multiple universities are included in the project in order to compare the model in different settings. The project will use Math Studio as a model for the teachers to focus on a lesson taught by one teacher but the group plans, observes, and reflects about the lesson together. A facilitator or math coach supports the group's work during the Math Studio process. The project has two research questions. First, how do pre-service teachers and cooperating teachers co-learn? More specifically, what vision, dispositions, understandings and practices of justification and generalization does each teacher develop during their time together? How does each teacher's vision, dispositions, understandings, and practices of mathematics teaching shift during their time together? Second, what are the design characteristics of the collaborative learning structures that support or inhibit pre-service teachers and cooperating teachers in learning? The qualitative study will collect video recordings and artifacts from the Math Studio, assessments of math teaching practices, and data from the leadership team in order to compare the model's implementation at different sites. The data analysis will occur iteratively throughout the project to refine the coding framework to describe learning and shifts in teacher practice.

Assessing College-Ready Computational Thinking (Collaborative Research: Wilson)

The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

Award Number: 
2010314
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

Because of the growing need for students to be college and career ready, high-quality assessments of college readiness skills are in high demand. To realize the goal of preparing students for college and careers, assessments must measure important competencies and provide rapid feedback to teachers. It is necessary to go beyond the limits of multiple-choice testing and foster the skills and thinking that lie at the core of college and career ready skills, such as computational thinking. Computational thinking is a set of valuable skills that can be used to solve problems, design systems, and understand human behavior, and is thus essential to developing a more STEM-literate public. Computational thinking is increasingly seen as a fundamental analytical skill that everyone, not just computer scientists, can use. The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

The project will address a set of research questions focused on 1) clarifying computational thinking constructs, 2) usability, reliability of validity of assessment items and the information they provide, 3) teachers' use of assessments, and 4) relationships to student performance. The study sample of 2,700 used for the pilot and field tests will include all levels of students in 10th through 12th grade and first year college students (both community college and university level). The target population is students in schools which are implementing the College Readiness Program (CRP) of the National Mathematics and Science Institute. In the 2020-21 academic year 54 high schools across 11 states (CA, GA, FL, ID, LA, NC, NM, OH, TX, VA, and WA) will participate. This will include high school students in Advanced Placement classes as well as non-Advanced Placement classes.  The team will use the BEAR Assessment System to develop and refine assessment materials. This system is an integrated approach to developing assessments that seeks to provide meaningful interpretations of student work relative to cognitive and developmental goals. The researchers will gather empirical evidence to develop and improve the assessment materials, and then gather reliability and validity evidence to support their use. In total, item response data will be collected from several thousand students. Student response data will be analyzed using multidimensional item response theory models.

Opening Pathways into Engineering through an Illinois Physics and Secondary Schools Partnership

The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to disparities in student access to high-quality, advanced physics instruction by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials.

Award Number: 
2010188
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project will conduct research and teacher professional development (PD) to adapt university-level instructional materials for implementation by high school teachers in their physics courses. Access to high-quality, advanced physics instruction in high school can open pathways for students to attain university STEM degrees by preparing them for the challenges faced in gatekeeping undergraduate physics courses. Yet, across the nation, access to such advanced physics instruction is not universally available, particularly in rural, urban, and low-income serving districts, in which instructional resources for teachers may be more limited, and physics teacher isolation, under-preparation and out-of-field teaching are most common. The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to these disparities in student access by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers.

The IPaSS Partnership Program puts education researchers, university physics instructors, and teacher professional development staff at the University of Illinois at Urbana-Champaign (U of I) in collaboration with in-service high school physics teachers to adapt university physics curricula and pedagogies to fit the context of their high school classrooms. The project will adapt two key components of U of I's undergraduate physics curriculum for high school use by: (1) using a web-based "flipped" platform, smartPhysics, which contains online pre-lectures, pre-labs and homework and (2) using research-based physics lab activities targeting scientific skill development, utilizing the iOLab wireless lab system - a compact device that contains all sensors necessary for hundreds of physics labs with an interface that supports quick data collection and analysis. The program adopts two PD elements that support sustained, in-depth teacher engagement: (1) incremental expansion of the pool of teachers to a cohort of 40 by the end of the project, with a range of physics teaching assignments and work collaboratively with a physics teaching community to develop advanced physics instruction for their particular classroom contexts, (2) involvement in a combination of intensive summer PD sessions containing weekly PD meetings with university project staff that value teachers' agency in designing their courses, and the formation of lasting professional relationships between teachers. The IPaSS Partnership Program also addresses needs for guidance, support and resources as teachers adapt to the shifts in Advanced Placement (AP) Physics standards. The recent revised high school physics curriculum that emphasizes deep conceptual understanding of central physical principles and scientific practices will be learned through the inquiry-based laboratory work. The planned research will address three central questions: (1) How does IPaSS impact teachers' practice? (2) Does the program encourage student proficiency in physics and their pursuit of STEM topics beyond the course? (3) What aspects of the U of I curricula must be adapted to the structures of the high school classroom to best serve high school student populations? To answer these questions, several streams of data will be collected: Researchers will collect instructional artifacts and video recordings from teachers' PD activities and classroom teaching throughout the year to trace the development of teachers' pedagogical and instructional development. The students of participating teachers will be surveyed on their physics knowledge, attitudes, and future career aspirations before and after their physics course, video recordings of student groupwork will be made, and student written coursework and grades will be collected. Finally, high school students will be surveyed post-graduation about their STEM education and career trajectories. The result of this project will be a community of Illinois physics teachers who are engaged in continual development of advanced high school physics curricula, teacher-documented examples of these curricula suited for a range of school and classroom contexts, and a research-based set of PD principles aimed at supporting students' future STEM opportunities and engagement.

Pages

Subscribe to Post-secondary Faculty