Pre-Kindergarten

Networking Urban Resources with Teachers and University to Enrich Early Childhood Science (NURTURES) Phase II: Expansion and Evaluation

Building on successful prior work, this project simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning.

Lead Organization(s): 
Award Number: 
1721059
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

Building on successful prior work, this University of Toledo project, Networking Urban Resources with Teachers and University to enRich Early Childhood Science (NURTURES): Researching the impact of teacher professional development and family engagement on PreK-3 achievement, simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning. Teachers participate in a two-week summer professional development program and receive support across the school year in the form of individualized coaching and participation in professional learning communities. Families receive science inquiry packets (sent home from school) four times a year and attend community STEM events throughout the year. Inquiry packets and community events encourage science inquiry, discourse, and further exploration of key science ideas. Project participants will include 120 teachers, 2,400 PreK-3 children and over 7,200 family members in Ohio and Michigan.

Extending the initial NURTURES project, developed with NSF Math and Science Partnership funding, this follow-up project aims to: 1) Transform early childhood science teaching based upon Next Generation Science Standards (NGSS) to measurably increase student science, literacy, and math achievement, and 2) Engage families of PreK-3 students in science inquiry practices to measurably improve student science, literacy, and math achievement. A particularly important facet of this follow-up project is the research effort to parse and understand how each component (teacher professional development versus family engagement) impacts student learning. The project will use a randomized control group research design (RCT) to compare student achievement outcomes among three groups: Children whose teachers received professional development and family engagement activities, children whose teachers received only professional development, and a control group. The project will use standardized tests (the TerraNova Complete Battery) to measure impact on learning gains in science, mathematics, reading, and early literacy for children in grades K- 3. The Lens on Science assessment will measure science learning in preschool children. This project will result in an NGSS-based program for teachers and families that has been systematically tested and may ultimately be scaled up to an impact study and dissemination at a broad level.

Readiness through Integrative Science and Engineering: Refining and Testing a Co-constructed Curriculum Approach with Head Start Partners

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

Lead Organization(s): 
Award Number: 
1621161
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Readiness through Integrative Science and Engineering (RISE) is a late stage design and development project that will build upon the results of an earlier NSF-funded design and development study in which a co-construction process for curriculum development was designed by a team of education researchers with a small group of Head Start educators and parent leaders. In this phase, the design team will be expanded to include Classroom Coaches and Community Experts to enable implementation and assessment of the RISE model in a larger sample of Head Start classrooms. In this current phase, an iterative design process will further develop the science, technology, and engineering curricular materials as well continue to refine supports for teachers to access families' funds of knowledge related to science, technology, and engineering in order to build on children's prior knowledge as home-school connections. The ultimate goal of the project is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families who tend to be underrepresented in curriculum development studies even though they are most at-risk for later school adjustment difficulties. The focus on science, technology, and engineering will address a gap in early STEM education.

The proposed group-randomized design, consisting of 90 teachers/classrooms (45 RISE/45 Control), will allow for assessment of the impact of a 2-year RISE intervention compared with a no-intervention control group. Year 1 will consist of recruitment, induction, and training of Classroom Coaches and Community Experts in the full RISE model, as well as preparation of integrative curricular materials and resources. In Year 2, participating teachers will implement the RISE curriculum approach supported by Classroom Coaches and Community Experts; data on teacher practice, classroom quality, and implementation fidelity will be collected, and these formative assessments will inform redesign and any refinements for Year 3. During Year 2, project-specific measures of learning for science, technology, and engineering concepts and skills will also be tested and refined. In Year 3, pre-post data on teachers (as in Year 2) as well as on 10 randomly selected children in each classroom (N = 900) will be collected. When child outcomes are assessed, multilevel modeling will be used to account for nesting of children in classrooms. In addition, several moderators will be examined in final summative analyses (e.g., teacher education, part or full-day classroom, parent demographics, implementation fidelity). At the end of this project, all materials will be finalized and the RISE co-construction approach will be ready for scale-up and replication studies in other communities.

Development of the Electronic Test of Early Numeracy

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish that will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures.

Partner Organization(s): 
Award Number: 
1621470
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish, focused on number and operations. The assessment will incorporate a learning trajectory that describes students' development of the understanding of number. The electronic assessment will allow for the test to adapt to students' responses and incorporate games to increase children's engagement with the tasks. These features take advantage of the electronic format. The achievement test will be designed to be efficient, user-friendly, affordable, and accessible for a variety of learning environments and a broad age range (3 to 8 years old). The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures. This project is funded by the Discovery Research Pre-K-12 Program, which funds research and development of STEM innovations and approaches in assessment, teaching and learning.

The e-TEN will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The items will be designed using domain-based learning trajectories that describe students' development of understanding of the topics. The test will be designed with some key characteristics. First, it will be semi-adaptive over six-month age spans. Second, it will have an electronic format that allows for uniform implementation and an efficient, user-friendly administration. The test will also be accessible to Spanish speakers using an inclusive assessment model. Finally, the game-based aspect should increase children's engagement and present more meaningful questions. The user-friendly aspect includes simplifying the assessment process compared to other tests of numeracy in early-childhood. The first phase of the development will test a preliminary version of the e-TEN to test its functionality and feasibility. The second phase will focus on norming of the items, reliability and validity. Reliability will be assessed using Item Response Theory methods and test-retest reliability measures. Validity will be examined using criterion-prediction validity and construct validity. The final phase of the work will include creating a Spanish version of the test including collecting data from bilingual children using both versions of the e-TEN.

Developing Formative Assessment Tools and Routines for Additive Reasoning

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. The project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses.

Lead Organization(s): 
Award Number: 
1620888
Funding Period: 
Thu, 09/01/2016 to Thu, 02/28/2019
Full Description: 

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. OGAP brings together two powerful ideas in mathematics education - formative assessment and research based learning trajectories - to enhance teacher knowledge, instructional practices, and student learning. Building on a proven track record of success with this model, the current project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses. The project involves a development component focused on producing and field testing new resources (including frameworks, item banks, pre-assessments and professional development materials) and a research component designed to improve the implementation of these resources in school settings. The materials that are developed from this project will help teachers be able to more precisely assess student understanding in the major mathematical work of grades K-2 in order to better meet the needs of diverse learners. With the addition of these new early elementary materials, OGAP formative assessment resources will be available for use from kindergarten through grade 8.

Although much attention has been paid to the improvement of early literacy, building strong mathematical foundations and early computational fluency is equally critical for later success in school and preparation for STEM careers. This project will develop and field test tools, resources, and routines that teachers can employ to help young students develop deeper conceptual understandings and more powerful and efficient strategies in the early grades. The project emerged from the needs of school-based practitioners looking for instructional support in the primary grades and uses design-based research methodology. The new materials will be developed, tested, and revised through multiple iterations of implementation in schools. Research-based learning trajectories will be consolidated into simplified frameworks that illustrate the overall progression of major levels of student thinking in the domains of counting, addition, and subtraction. A bank of formative assessment items will be developed, field tested, and refined through a three-phase validation process. Professional development modules will be designed and field tested to support teacher knowledge and effective use of the formative assessment tools and routines. Data collected on key activities in the formative assessment process (including teacher selection of items, analysis of student work, instructional implications, and enacted instructional response) will be used to continually inform development as well as illuminate the conditions under which formative assessment leads to productive changes in instruction and student learning in the classroom. The project will yield a set of field tested tools and resources ready for both broader dissemination and further research on the promise of the intervention, as well as an understanding of how to support effective implementation.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Pages

Subscribe to Pre-Kindergarten