Middle School

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Design and Development of a K-12 STEM Observation Protocol (Collaborative Research: Roehrig)

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

Award Number: 
1813342
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will be developed for use in K-12 STEM settings. While the importance of integrated STEM education is established, there remains disagreement on models and effective approaches for integrated STEM instruction. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning to inform research to the effectiveness of new models and strategies. Existing instruments were not developed for use in integrated STEM learning environments. The STEM-OP will be designed to be used effectively by multiple stakeholders in a variety of contexts. Researchers will benefit from having the STEM-OP available for them to carry out research and continue to improve STEM education in a variety of ways. Existing instruments were not developed for use in integrated STEM learning environments.  The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available online platform. In brief, the STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

The primary product of this project is the new observation protocol called STEM-OP for K-12 classrooms implementing integrated STEM lessons. The project will use over 500 integrated STEM classroom videos to design the STEM-OP. Using exploratory and confirmatory factor analysis, the STEM-OP will be a valid and reliable instrument for use in a variety of educational contexts. The research will explore the different ways that elementary, middle, and high school science teachers enact integrated STEM instruction. This study will shed light on the nature of STEM instruction in each of these grade bands and provide information building towards an understanding of learning progressions for engineering practices across grade bands. Research exploring how the nature of STEM integration changes from day to day over the course of a unit will provide critical information about the different sequencing and trajectories of STEM units. Examining how integrated STEM instruction unfolds over a full unit of instruction will inform the understanding of integrated STEM practices at both micro- and macro- levels of analysis. The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available, which will be distributed via a publicly available, online platform that includes a training manual and classroom video for practice scoring.

Design and Development of a K-12 STEM Observation Protocol (Collaborative Research: Dare)

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

Lead Organization(s): 
Award Number: 
1854801
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will be developed for use in K-12 STEM settings. While the importance of integrated STEM education is established, there remains disagreement on models and effective approaches for integrated STEM instruction. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning to inform research to the effectiveness of new models and strategies. Existing instruments were not developed for use in integrated STEM learning environments. The STEM-OP will be designed to be used effectively by multiple stakeholders in a variety of contexts. Researchers will benefit from having the STEM-OP available for them to carry out research and continue to improve STEM education in a variety of ways. Existing instruments were not developed for use in integrated STEM learning environments.  The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available online platform. In brief, the STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

The primary product of this project is the new observation protocol called STEM-OP for K-12 classrooms implementing integrated STEM lessons. The project will use over 500 integrated STEM classroom videos to design the STEM-OP. Using exploratory and confirmatory factor analysis, the STEM-OP will be a valid and reliable instrument for use in a variety of educational contexts. The research will explore the different ways that elementary, middle, and high school science teachers enact integrated STEM instruction. This study will shed light on the nature of STEM instruction in each of these grade bands and provide information building towards an understanding of learning progressions for engineering practices across grade bands. Research exploring how the nature of STEM integration changes from day to day over the course of a unit will provide critical information about the different sequencing and trajectories of STEM units. Examining how integrated STEM instruction unfolds over a full unit of instruction will inform the understanding of integrated STEM practices at both micro- and macro- levels of analysis. The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available, which will be distributed via a publicly available, online platform that includes a training manual and classroom video for practice scoring.

Design and Development of a K-12 STEM Observation Protocol (Collaborative Research: Ring-Whalen)

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

Lead Organization(s): 
Award Number: 
1812794
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will be developed for use in K-12 STEM settings. While the importance of integrated STEM education is established, there remains disagreement on models and effective approaches for integrated STEM instruction. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning to inform research to the effectiveness of new models and strategies. Existing instruments were not developed for use in integrated STEM learning environments. The STEM-OP will be designed to be used effectively by multiple stakeholders in a variety of contexts. Researchers will benefit from having the STEM-OP available for them to carry out research and continue to improve STEM education in a variety of ways. Existing instruments were not developed for use in integrated STEM learning environments.  The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available online platform. In brief, the STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

The primary product of this project is the new observation protocol called STEM-OP for K-12 classrooms implementing integrated STEM lessons. The project will use over 500 integrated STEM classroom videos to design the STEM-OP. Using exploratory and confirmatory factor analysis, the STEM-OP will be a valid and reliable instrument for use in a variety of educational contexts. The research will explore the different ways that elementary, middle, and high school science teachers enact integrated STEM instruction. This study will shed light on the nature of STEM instruction in each of these grade bands and provide information building towards an understanding of learning progressions for engineering practices across grade bands. Research exploring how the nature of STEM integration changes from day to day over the course of a unit will provide critical information about the different sequencing and trajectories of STEM units. Examining how integrated STEM instruction unfolds over a full unit of instruction will inform the understanding of integrated STEM practices at both micro- and macro- levels of analysis. The STEM-OP and associated training materials will be available for use by other education stakeholders, such as K-12 teachers and district administrators, through a publicly available, which will be distributed via a publicly available, online platform that includes a training manual and classroom video for practice scoring.

Methods for Assessing Replication

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

Lead Organization(s): 
Award Number: 
1841075
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Replication of prior findings and results is a fundamental feature of science and is part of the logic supporting the claim that science is self-correcting. However, there is little prior research on the methodology for studying replication. Research involving meta-analysis and systematic reviews that summarizes a collection of research studies is more common. However, the question of whether the findings from a set of experimental studies replicate one another has received less attention. There is no clearly defined and widely accepted definition of a successful replication study or statistical literature providing methodological guidelines on how to design single replication studies or a set of replication studies. The research proposed here builds this much needed methodology.

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies. It addresses three fundamental problems. The first is how to define replication: What, precisely, should it mean to say that the results in a collection of studies replicate one another? Second, given a definition of replication, what statistical analyses should be done to decide whether the collection of studies replicate one another and what are the properties of these analyses (e.g., sensitivity or statistical power)? Third, how should one or more replication studies be designed to provide conclusive answers to questions of replication? The project has the potential for impact on a range of empirical sciences by providing statistical tools to evaluate the replicability of experimental findings, assessing the conclusiveness of replication attempts, and developing software to help plan programs of replication studies that can provide conclusive evidence of replicability of scientific findings.

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Developing a Generalized Storyline that Organizes the Supports for Evidence-based Modeling of Long-Term Impacts of Disturbances in Complex Systems

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems.

Lead Organization(s): 
Award Number: 
1813802
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences. There are a wide variety of complex systems principles at work in disturbance ecology. This project serves as a starting point on supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis). These same complex systems principles can be applied to other scientific phenomena, such as homeostasis and the spread of infectious disease. This project will bring the excitement of Luquillo Long Term Ecological Research (LTER) to classrooms outside of Puerto Rico, and has a special emphasis on low performing, low income, high minority schools in Chicago. Over 6000 students will directly benefit from participation in the research program. The units will be incorporated into the Journey to El Yunque web site for dissemination throughout Chicago Public Schools (CPS) and the LTER network. The units will be submitted for review at the Achieve network, thus extending the reach to teachers around the country. The project will impact science teachers and curriculum designers through an online course on storyline development. This project aims to improve students' ability to engage in argument from evidence and address what the literature has identified as a significant challenge, namely the ability to evaluate evidence. Researchers will also demonstrate how it is possible to make progress on implementing Next Generation Science Standards in low performing schools. Through the web-based platform, these results can be replicated across many other school districts.

Researchers will to use the scientific context of the LTER program to develop a generalized storyline template for using evidence-based modeling to teach basic principles of disturbance ecology. Though a co-design process with middle school teachers in CPS, researchers will test the application of learning principles to a generalized storyline template by developing and evaluating three units on disturbance ecology - one life science, one Earth system science, and one physical science. Through a task analysis, researchers have identified three key areas of support for students to be successful at explaining how a system will respond to a disturbance. First, students need to be able to record evidence in a manner that will guide them to developing their explanation. Causal model diagrams have been used successfully in the past to organize evidence, but little is known about how students can use their causal diagrams for developing explanations. Second, there have been a wide variety of scaffolds developed to support the evaluation of scientific arguments, but less is known about how to support students in organizing their evidence to produce scientific arguments. Third, evidence-based modeling and scientific argumentation are not tasks that can be successfully accomplished by following a recipe. Students need to develop a task model to understand the reason why they are engaged in a particular task and how that task will contribute to the primary goal of explanation.

Critical Issues in Mathematics Education 2018

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years.

Award Number: 
1827412
Funding Period: 
Thu, 03/01/2018 to Thu, 02/28/2019
Full Description: 

This conference will continue the workshop series, Critical Issues in Mathematics Education (CIME) on teaching and learning mathematics, initiated by the Mathematical Sciences Research Institute (MSRI) in 2004. The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students' engagement and interests in mathematics across K-12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students' identities and their diverse intellectual resources and lived experience.

The CIME workshops impact three distinct communities: research mathematicians, mathematics educators (K-16), and education researchers. Participants learn about research and development efforts that can enhance their own work and the contributions they can make to solving issues in mathematics education. Participants also connect with others concerned about those issues. This workshop will also focus on developing action plans that participants can implement once they return to their institutions. There is also a focus on recruitment of leaders of mathematics departments, teachers, and other leaders in mathematics education across K-12, undergraduate education and graduate education in order to examine systemic changes that can be made to increase access, engagement, and interest in mathematics.

Developing a Culturally Responsive Computing Instrument for Underrepresented Students

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers.

Project Email: 
Lead Organization(s): 
Award Number: 
1822346
Funding Period: 
Thu, 02/15/2018 to Fri, 01/31/2020
Project Evaluator: 
Full Description: 

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers. The project explores the constructs of culturally responsive computing across youths of diverse gender and racial identities (i.e., White, African American, Latino, Native American, Alaskan Native boys and girls) using a culturally responsive, participatory action research approach.

The project explores and develops the factor structure of an instrument on culturally responsive computing with diverse middle and high schoolers of intersecting identities. It uses culturally responsive methodologies to co-create an instrument for later validation that will assess youths' self-efficacy and self-perceptions in technology. The project will explore Culturally Response Computing constructs across variables by conducting observations, focus groups and interviews, and collect context data and information from teachers and students that will contribute to a series of case examples. The work involves a two-phase mixed-methods research study focused on assembling evidence to assess, design and validate a Culturally Responsive Computing Framework from theory to empirical application. A total of 50 students and teachers from four geographically diverse rural and urban areas and racial ethnic backgrounds will participate in co-creating constructs.

Alternative video text
Alternative video text: 

Pages

Subscribe to Middle School