Middle School

Using Technology to Capture Classroom Interactions: The Design, Validation, and Dissemination of a Formative Assessment of Instruction Tool for Diverse K-8 Mathematics Classrooms

This project will refine, expand, and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students.

Lead Organization(s): 
Award Number: 
1814114
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 

An important aspect of mathematics teaching and learning is the provision of timely and targeted feedback to students and teachers on the teaching and learning processes. However, many of the tools and resources focused on providing such feedback (e.g., formative assessment) are aimed at helping students. However, formative assessment of teaching can be equally transformative for teachers and school leaders and is a key component of improved teacher practice. This project will refine, expand and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students. The tablet or computer-based tool is intended for use with teacher leaders, principals, coaches, and others interested in assessing teacher practice in a formative way.

This project will continue the development of the MHT through: (1) the integration of an access component; (2) analysis of videos collected during prior studies covering a diverse set of classrooms across the K-8 spectrum; (2) a validation study using validity-argument approach; and (3) the development, piloting, and refinement of professional development modules that will guide math educators, researchers, and practitioners in using the MHT effectively as a formative assessment of instruction. The revised MHT will be validated through analyses of video data from a range of K-8 classrooms with varying demographics and contexts such as socio-economic status, language backgrounds, gender, school settings (e.g., urban, rural, suburban), and race, with particular attention to increasing accessibility to mathematics learning by students who are traditionally underserved, including emergent bilingual students. The data analysis plan involves video coding with multiple checks on reliability, dimensionality analysis with optimal scaling, correlation analysis, and hierarchical linear modeling.

Accelerating Higher Order Thinking and STEM Content Learning Among Students with Learning Disabilities

The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge.

Award Number: 
1813556
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

The need for reduction in achievement gaps and the growing adoption of rigorous curriculum standards has raised expectations for all students, but especially for students with learning disabilities. Students are expected to learn science concepts and use their understanding to investigate the natural world through scientific inquiry. They must also develop higher-order reasoning skills, integrate knowledge and ideas using primary sources, use causal reasoning to understand the chain of events, delineate and evaluate claims, and assess the reasoning used in arguments. Lower participation and achievement in science courses makes students with learning disabilities less likely to pursue STEM degrees, STEM careers, and succeed in the labor market where higher order thinking skills and scientific literacy are increasingly important. It is important to develop innovative tools that build on evidence based practices in combination with promising new technologies to improve the academic trajectory in STEM disciplines. The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge. The team will refine CORGI to offer enhanced functionality and supports for scientific argumentation, concept mastery, collaboration strategies and social skills for cooperative groups.  Technology enhancements will include multimedia input and output, writing supports (e.g., sentence starters), discussion threads, and affective reactions to content/lessons.

The research team will work with both teachers and students to develop integrated units, new higher order thinking routines, learning and collaboration strategies, and new technological functionality in CORGI_2. Researcher-practitioner-student design teams will use Design-Based Intervention Research (DBR) methods to iteratively: (a) identify the science content for inclusion, (b) develop integrated content units in life, physical, and earth science, (c) integrate additional higher order thinking and learning strategies to promote higher-order thinking and reasoning, and (c) design and implement additional UDL and mobile functionality for CORGI_2. Participants will include 30 middle school teachers and approximately 200 students with learning disabilities, including reading disabilities. Researchers will collect formative evaluation data from teachers and students to examine the usability, science content learning, higher order thinking skills, engagement, and motivation of general education and special education students in middle school classrooms. Professional development modules will be developed to support the DBR cycles as well as to support wider scale adoption and use by all students.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Marchand)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Award Number: 
1812976
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Harris)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Lead Organization(s): 
Award Number: 
1907480
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

This project was previously funded under award #1813086.

Usable Measures of Teacher Understanding: Exploring Diagnostic Models and Topic Analysis as Tools for Assessing Proportional Reasoning for Teaching

This project seeks to measure the kinds of knowledge developed in professional development (PD) programs that have been shown to matter for teachers' classroom practices and their students' learning. The project aims to develop an assessment that identifies patterns in the teachers' learning in a way that helps drive subsequent PD.The overall goal of this project is to pursue a potentially transformative approach to the assessment of teacher proportional knowledge by developing a measure that is well aligned with the content and skills taught in various PD programs.

Award Number: 
1813760
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

One of the great challenges related to teachers and their knowledge is measuring their learning in ways that are both formative and meaningful in relation to their likely impact on students. This challenge persists despite efforts to define the knowledge teachers should have and despite previous innovative efforts to create good measures. This project tackles the challenge by specifically aiming to measure the kinds of knowledge developed in professional development (PD) programs that has been shown to matter for teachers' classroom practices and their students' learning. The project aims to develop an assessment that identifies patterns in the teachers' learning in a way that helps drive subsequent professional development.

The overall goal of this project is to pursue a potentially transformative approach to the assessment of teacher proportional knowledge by developing a measure that is well aligned with the content and skills taught in various PD programs. This instrument will be based on a new approach that builds on emerging psychometric models. Specifically, diagnostic classification models (DCMs) will be utilized to diagnose teachers' learning during a PD program as well as employed to identify the progression in teachers' learning.  Statistical topic models (STMs) will be used to look for patterns of understanding that emerge from open-ended responses and provide natural-language insight into teachers' reasoning. A final version of the assessment will be constructed for a national sample based on the results from the predictive validity stage, and this version will be tested with teachers who participate in various types of PD programs targeting proportional reasoning. This project has broad implications for the creation of assessments and for teacher education. It will provide insights about whether there is a clear learning progression for teachers. While much work has been done with students' learning progression, much less is known about how teachers learn. Another implication is that the STM approach allows machine scoring of natural language in a way that highlights strengths and weaknesses in reasoning rather than simply returning a score. For formative use, this is information that is more helpful as it highlights areas for further instruction. A third implication is that DCMs will allow to assess teacher knowledge at a finer-grained understanding than is typically available, thus allowing for careful refinement of PD as well as a tool for showing overall growth in PD. A fourth implication is that a more systematic approach will be followed to capture the kinds of knowledge teachers need. Assessments developed using DCMs and STMs have the potential to serve as models for developing further instruments in other STEM content areas. Such assessments have the potential to not only help identify successful PD programs, but also to provide PD providers with rich data from which they can make instructional decisions.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

LabVenture - Revealing Systemic Impacts of a 12-Year Statewide Science Field Trip Program

This project will examine the impact of a 12-year statewide science field trip program called LabVenture, a hands-on program in discovery and inquiry that brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) to become fully immersed in explorations into the complexities of local marine science ecosystems.

Award Number: 
1811452
Funding Period: 
Sat, 09/01/2018 to Thu, 08/31/2023
Full Description: 

This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Riordan)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Lead Organization(s): 
Award Number: 
1812660
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

GeoHazard: Modeling Natural Hazards and Assessing Risks

This project will develop and test a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts.

Lead Organization(s): 
Award Number: 
1812362
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

As human populations grow and spread into areas where extreme natural events impact lives, there is increasing need for innovative Earth science curriculum materials that help students interpret data and and understand the factors and risks associated with natural hazards. Studying the processes underlying these naturally occurring events and the relationships between humans and their environments would enrich the standard Earth science curriculum by providing students with valuable insights about the potential impacts of extreme natural events. This project will respond to that need by developing and testing a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. Each module will be designed as a sequence of activities lasting approximately 7-10 class periods. These will be stand-alone modules so each teacher can implement just one module or several modules. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts. Students will develop scientific arguments that include risk assessment based on their understanding of real-world data and the particular Earth system being studied. The project will develop a set of computational models designed specifically to explore geoscience systems responsible for natural hazards. An open-source data analysis tool will also be modified for students to create and analyze visualizations of the magnitude, frequency, and distribution of real-world hazards and the impact of those hazards on people. Students will compare data generated from the Earth systems models with real-world data in order to develop an understanding of the cause and progression of natural hazards, as well as to make predictions and evaluate future risks.

The four-year, early stage design and development project will be conducted in two phases. In Phase 1, design-based research will be used to iteratively design and test Earth systems models. A team of five lead teachers will field test modules and provide focus group feedback during the development phase of the curricula. These lead teachers will provide input into the design and development of the tools, the organization and structure of the curriculum, and provide suggestions about classroom implementation to support the development of teacher support materials. After the models are developed, four curriculum modules related to hurricanes, earthquakes, floods, and wildfires will be developed, tested, and revised. In Phase 2, a group of 30 teachers will participate in implementation studies that will test usability of the modules across students from diverse backgrounds and feasibility of implementation across a range of classroom settings. Research will focus on understanding how to support student analysis of real-world datasets in order to improve their conceptual understanding of complex Earth systems associated with natural hazards. The project will also examine the role of uncertainty when students make scientific arguments that include predictions about the behaviors of complex systems and the uncertainties related to risk assessment. The project aims to clarify student views of uncertainty and how teachers can better support student understanding of the inherently uncertain nature of systems, models, and natural hazards, while understanding that models can be used to reduce impact. Questions guiding project research include: (1) How do students use flexible data visualizations to make sense of data and build and refine conceptual models about natural hazards? (2) How do students incorporate data from models and the real world in formulating scientific arguments; how do students use scientific uncertainty to assess risks based on their understanding of a natural hazard system; and how do students quantify and explain risks to humans and compare different sources of risks? And (3) Do GeoHazard curriculum modules help students make gains in risk-infused scientific argumentation practice and conceptual understanding underlying natural hazards? To what extent, for whom, and under what conditions is the GeoHazard curriculum useful in developing risk-infused scientific argumentation practice and conceptual understanding?

Pages

Subscribe to Middle School