Middle School

Supporting Teachers to Develop Equitable Mathematics Instruction Through Rubric-Based Coaching (Collaborative Research: Hill)

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics.

Lead Organization(s): 
Award Number: 
2100961
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Creating supportive middle school mathematics learning spaces that foster students' self-efficacy and mathematics learning is a critical need in the United States. This need is particularly urgent for mathematics classrooms with students who have been historically marginalized in such spaces. While many instructional improvement efforts have focused on broadening access to mathematical ideas, fewer efforts have paid explicit attention to the ways instructional practices may serve to marginalize students. Supporting teachers in identifying and refining their equitable mathematics instructional practices is a persistent challenge. This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project's work integrates the EAR-MI rubrics into the MQI Coaching model with 24 middle grades mathematics coaches supporting 72 teachers at grades 5-8. The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

The project makes use of a delayed-treatment experimental design to investigate effects on teacher beliefs and practices and student achievement and sense of belonging. A cohort of 14 coaches are randomly selected to participate in the coaching in Years 2 and 3, with the remaining 10 coaches assigned to a business-as-usual model in Year 2 and engaging in the training in Year 3. Coaches engage in a 4-day summer training to become acquainted with the model with coaching cycles and follow-up meetings during the school year. Each coach will engage teachers in 8-10 coaching cycles in treatment years. Data on the nature of the coaching includes logs and surveys from the coaches. Teachers submit surveys related to their beliefs and practices and two lessons each at the start and end of the academic year for analysis. Student assessment data, course grades, and administrative data, combined with survey data from students on classroom belonging and perceptions of ability and confidence in mathematics, are used to describe student outcomes. Teacher outcomes are captured through the analysis of classroom video, surveys about ethnic-racial identity and racial attitudes, beliefs about students and instruction, and beliefs about and efficacy for culturally responsive teaching. The project uses a set of survey measures with established reliability and validity, adapting some instruments to include specific indicators related to the equity and access rubrics. Analysis of the data uses a multi-level model accounting for the clustering of teachers within schools and students within classrooms and schools.

Supporting Teachers to Develop Equitable Mathematics Instruction Through Rubric-based Coaching (Collaborative Research: Litke)

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics.

Lead Organization(s): 
Award Number: 
2100793
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Creating supportive middle school mathematics learning spaces that foster students' self-efficacy and mathematics learning is a critical need in the United States. This need is particularly urgent for mathematics classrooms with students who have been historically marginalized in such spaces. While many instructional improvement efforts have focused on broadening access to mathematical ideas, fewer efforts have paid explicit attention to the ways instructional practices may serve to marginalize students. Supporting teachers in identifying and refining their equitable mathematics instructional practices is a persistent challenge. This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project's work integrates the EAR-MI rubrics into the MQI Coaching model with 24 middle grades mathematics coaches supporting 72 teachers at grades 5-8. The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

The project makes use of a delayed-treatment experimental design to investigate effects on teacher beliefs and practices and student achievement and sense of belonging. A cohort of 14 coaches are randomly selected to participate in the coaching in Years 2 and 3, with the remaining 10 coaches assigned to a business-as-usual model in Year 2 and engaging in the training in Year 3. Coaches engage in a 4-day summer training to become acquainted with the model with coaching cycles and follow-up meetings during the school year. Each coach will engage teachers in 8-10 coaching cycles in treatment years. Data on the nature of the coaching includes logs and surveys from the coaches. Teachers submit surveys related to their beliefs and practices and two lessons each at the start and end of the academic year for analysis. Student assessment data, course grades, and administrative data, combined with survey data from students on classroom belonging and perceptions of ability and confidence in mathematics, are used to describe student outcomes. Teacher outcomes are captured through the analysis of classroom video, surveys about ethnic-racial identity and racial attitudes, beliefs about students and instruction, and beliefs about and efficacy for culturally responsive teaching. The project uses a set of survey measures with established reliability and validity, adapting some instruments to include specific indicators related to the equity and access rubrics. Analysis of the data uses a multi-level model accounting for the clustering of teachers within schools and students within classrooms and schools.

Supporting Teachers to Develop Equitable Mathematics Instruction Through Rubric-based Coaching (Collaborative Research: Wilson)

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics.

Award Number: 
2100830
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Creating supportive middle school mathematics learning spaces that foster students' self-efficacy and mathematics learning is a critical need in the United States. This need is particularly urgent for mathematics classrooms with students who have been historically marginalized in such spaces. While many instructional improvement efforts have focused on broadening access to mathematical ideas, fewer efforts have paid explicit attention to the ways instructional practices may serve to marginalize students. Supporting teachers in identifying and refining their equitable mathematics instructional practices is a persistent challenge. This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project's work integrates the EAR-MI rubrics into the MQI Coaching model with 24 middle grades mathematics coaches supporting 72 teachers at grades 5-8. The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

The project makes use of a delayed-treatment experimental design to investigate effects on teacher beliefs and practices and student achievement and sense of belonging. A cohort of 14 coaches are randomly selected to participate in the coaching in Years 2 and 3, with the remaining 10 coaches assigned to a business-as-usual model in Year 2 and engaging in the training in Year 3. Coaches engage in a 4-day summer training to become acquainted with the model with coaching cycles and follow-up meetings during the school year. Each coach will engage teachers in 8-10 coaching cycles in treatment years. Data on the nature of the coaching includes logs and surveys from the coaches. Teachers submit surveys related to their beliefs and practices and two lessons each at the start and end of the academic year for analysis. Student assessment data, course grades, and administrative data, combined with survey data from students on classroom belonging and perceptions of ability and confidence in mathematics, are used to describe student outcomes. Teacher outcomes are captured through the analysis of classroom video, surveys about ethnic-racial identity and racial attitudes, beliefs about students and instruction, and beliefs about and efficacy for culturally responsive teaching. The project uses a set of survey measures with established reliability and validity, adapting some instruments to include specific indicators related to the equity and access rubrics. Analysis of the data uses a multi-level model accounting for the clustering of teachers within schools and students within classrooms and schools.

Leveraging the Power of Reflection and Visual Representation in Middle-Schoolers' Learning During and After an Informal Science Experience (Collaborative Research: Uttal)

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips.

Lead Organization(s): 
Award Number: 
2115905
Funding Period: 
Fri, 10/01/2021 to Tue, 09/30/2025
Full Description: 

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when?  and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.

Leveraging the Power of Reflection and Visual Representation in Middle-Schoolers' Learning During and After an Informal Science Experience (Collaborative Research: Dickes)

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips.

Award Number: 
2115603
Funding Period: 
Fri, 10/01/2021 to Tue, 09/30/2025
Full Description: 

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when?  and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.

Leveraging the Power of Reflection and Visual Representation in Middle-Schoolers' Learning During and After an Informal Science Experience (Collaborative Research: Haden)

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips.

Lead Organization(s): 
Award Number: 
2115610
Funding Period: 
Fri, 10/01/2021 to Tue, 09/30/2025
Full Description: 

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when?  and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.

Reaching Across the Hallway: An Interdisciplinary Approach to Supporting Computer Science in Rural Schools

Principal Investigator: 

"Reaching Across the Hallway: An Interdisciplinary Approach to Supporting Computer Science in Rural Schools" is in its first project year. Our goal is to design and develop a train-the-trainer professional development model that supports 5th-8th grade teachers in integrating culturally relevant computer science into their rural, social studies classrooms.

Click image to preview: 
Target Audience: 

Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

Principal Investigator: 

This poster describes the work of the Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI) project, which aims to address the growing need to develop empirically grounded ways of assessing the extent to which the practices that are being outlined in research literature actually serve to support students who are currently underserved and underrepresented in mathematics.

Co-PI(s): Annie Garrison Wilhelm, Southern Methodist University; Temple Walkowiak, North Carolina State University

Click image to preview: 

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Harris, Linnenbrink-Garcia, and Marchand)

Principal Investigator: 

This collaborative project uses co-design as a strategy to develop a professional learning approach to help middle school teachers support students' motivation and engagement in the context of NGSS instruction. The project brings together motivation experts, science education researchers, and middle school science teachers. The poster outlines the project goals, introduces five motivation design principles, and describes four tools that were co-developed to support teachers' professional learning and practice for supporting student motivation.

Click image to preview: 
Target Audience: 

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Riordan)

Principal Investigator: 

With the increasing use of online interactive environments for science and engineering education in grades K-12, there is a growing need for detailed automatic analysis of student explanations to provide targeted and individualized guidance. In this work we describe a process of human annotation of student ideas based on deconstructed holistic scoring rubrics for knowledge integration in science learning and develop new NLP methods for identifying diverse expressions of student ideas and reasoning.

Click image to preview: 
Target Audience: 

Pages

Subscribe to Middle School