Special Education

Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics

This project will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. 

Lead Organization(s): 
Award Number: 
1503451
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The 3-year exploratory project, Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics, will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). While mathematics problem-solving skills are critical in all areas of daily life, many students with LDM do not acquire key math concepts such as additive and multiplicative reasoning in a proficient manner during the early school years. In fact, about 5-10% of school-age children are identified as having mathematical disabilities which might cause them to experience considerable difficulties in the upper grades and experience persistent academic, life, and work challenges. Despite the proliferation of web-based mathematical games for early learners, there are very few programs or tools that target growth in the conceptual understanding of fundamental mathematical ideas, which is essential in enabling young students with LDM to perform proficiently in mathematical and everyday contexts. COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. COMPS-A will also make the reasoning and underlying mathematical model more explicit to them, and the tool's flexibility will facilitate group or one-on-one instruction in regular classroom settings, in other sessions during or after the school day, and at home. COMPS-A addresses a significant practical issue in today's classrooms by providing individualized and effective RtI intervention programs for students with LDM.

COMPS-A program represents a mathematical model-based problem-solving approach that emphasizes understanding and representation of mathematical relations in algebraic equations and, thus, will support growth in generalized problem-solving skills.COMPS-A will achieve the following objectives: 1) Create the curriculum content, screen design, and a teacher's manual for all four modules in the area of additive word problem solving; 2) Design and develop the cross-platform computer application that can be ported as a web-based, iPad, Android, or Windows app, and this flexibility will make the program accessible to all students; and 3) Conduct small-scale single subject design and randomized controlled trial studies to evaluate the potential of COMPS-A to enhance students' word problem-solving performance. The following research questions will be resolved: (1) What is the functional relationship between the COMPS-A program and students' performance in additive mathematics problem solving? (2) What is the teacher's role in identifying students' misconceptions, alternative reasoning, and knowledge gaps when students are not responsive to the intervention program? (3) What are the necessary instructional scaffolds that will address students' knowledge gaps and therefore facilitate the connection between students' conceptual schemes and the mathematical models necessary for problem solving in order to promote meaningful understanding and construction of additive reasoning? A functional prototype of the COMPS-A will be developed followed by a single-subject design study with a small group of students with LDM to field-test the initial program. Finally, a pretest-posttest, comparison group design with random assignment of participants to groups will then be used to examine the effects of the two intervention conditions: COMPS-A and business as usual. An extensive dissemination plan will enable the project team to share results to a wider community that is responsible for educating all students and, especially, students with LDM.

 

Ramping Up Accessibility in STEM: Inclusively Designed Simulations for Diverse Learners

This project brings together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503439
Funding Period: 
Wed, 07/15/2015 to Fri, 06/30/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will bring together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities. The Physics Education Technology (PhET) Interactive Simulations project (University of Colorado Boulder) will develop and research interactive science and math simulations used by teachers and students around the world. The Inclusive Design Research Centre (OCAD University, Toronto, Ontario) is an international leader in inclusively designed technology, with the goal of designing for the full range of human diversity including those with and without disabilities. Together, the project team will engage in an iterative design process to develop innovative solutions for making the highly interactive environment of an educational simulation simultaneously intuitive, accessible, and supportive of exploration and discovery practices in science. Development efforts will focus on three inclusive simulations and optimize the design and implementation of several inclusive simulation features, including keyboard navigation, auditory descriptions for screen readers, the use of non-speech sounds to provide feedback (sonification), and the ability to control the simulation with assistive technology (AT) devices. For each simulation, professional development materials for teachers, including classroom activities and user guides, will be developed to support teachers in effectively using the inclusively designed simulations in their classrooms. 

Through new research, this project will seek to understand: 1) how inclusive simulations can support students with disabilities to engage in science practices, 2) how students with and without disabilities utilize inclusive simulations for learning STEM content, and 3) how students can engage in collaborative learning between students with and without disabilities - with an inclusive simulation. Researchers will use individual interviews with diverse students to closely examine these questions. The resulting resources, models, and tools will provide exemplars and important building blocks for an inclusively designed interactive curriculum, educational games, and assessment tools. Resulting simulations, research findings, design guidelines, and exemplars will be disseminated through the project team and advisor partner networks, education resource websites, and educator professional organizations.

Precision Math: Using Interactive Gaming Technology to Build Student Proficiency in the Foundational Concepts and Problem Solving Skills of Measurement and Data Analysis

The purpose of this 4-year project is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component and (b) hands-on activities.

Lead Organization(s): 
Award Number: 
1503161
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Strong knowledge of measurement and data analysis is essential to ensure competiveness of the nation as a whole and full access to educational and work opportunities for all students. Despite this importance, a considerable number of U.S. students, particularly students from poor and minority backgrounds, struggle with these two areas of mathematics. The purpose of this 4-year Research and Development project, Precision Mathematics (PM): Building Student Proficiency in the Foundational Concepts and Problem Solving Skills of Measurement and Data Analysis, is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component that will provide students with individualized instruction and (b) hands-on activities that will offer opportunities for students to interact with their teacher and peers around critical measurement and data analysis concepts. Primary activities of the project will include intervention development, pilot testing, data analysis, and intervention revision. One primary benefit of PM is that it will provide struggling learners with meaningful access to critical concepts and skills identified in the Common Core State Standards Initiative. Another benefit is that will be designed to serve as a foundation for students to understand more advanced mathematical concepts introduced in the later grades. PM has the potential to address a concerning gap in U.S. education. To date, intervention research focused on measurement and data analysis is scant.

Proficiency with measurement and data analysis is essential for obtaining occupations in the STEM fields. A primary aim of this project is to develop PM, a mathematics intervention designed to teach key concepts of measurement and data analysis to at-risk 1st and 2nd grade students. Comprising the intervention will be technology-based and collaborative problem-solving activities. At each grade, the intervention will provide 20 hours of instruction focused on topics identified in the Common Core State Standards. A primary aim of the project is to develop the intervention using a design science approach, including a mix of qualitative and quantitative research methods that will guide iterative testing and revision cycles. A second primary aim is to test the promise of the intervention to improve student mathematics achievement. Rigorous pilot studies (i.e., randomized controlled trials) will be conducted in 1st and 2nd grade classrooms involving over 700 at-risk students. Within classrooms, students will be randomly assigned to treatment (PM) or control conditions (business as usual). Two research questions will be addressed: (a) What is the potential promise of the intervention when delivered in authentic education settings? (b) Based on empirical evidence, are revisions to the intervention's theory of change necessary? Tests of main effects of intervention effects will be conducted using analysis of covariance models, adjusting for pretest scores. Generated findings are anticipated to contribute to the knowledge base on early STEM learning for at-risk learners.

CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT) for Students with Learning Disabilities

This project is studying and supporting the development of conceptual understanding of fractions by students with learning disabilities (LD).  Rather than focusing on whether students can or cannot develop conceptual understanding, the project is focused on uncovering the complex understanding students DO have.

Award Number: 
1708327
Funding Period: 
Tue, 07/01/2014 to Sun, 06/30/2019
Project Evaluator: 
Dr. Mary Little
Full Description: 

Dr. Hunt, a former middle school and elementary school mathematics in inclusive settings in a state-demonstration STEM school, works with students deemed to be at risk for mathematics difficulties or labeled as having disabilities. Hunt contends that research and pedagogical practice for children with disabilities should begin from a respect for children's ways of knowing and learning. Rather than focusing on whether students can or cannot develop conceptual understanding, research should attempt to uncover the complex understanding students DO have. She argues that teaching based in learning theory that positions children's learning as adaptation advances reasoning, sense-making, and co-construction of meaning.

The goal of Hunt's project- "CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT)"-  is to study and support the development of conceptual understanding of fractions by students with learning disabilities (LD).  Dr. Hunt is re-conceptualizing intensive intervention as children's knowing and learning in "Small Environments". This approach suggests a redirect of research and instructional practice in mathematics for an underserved population of students. The project has the potential to offer a transformative approach to mathematics instruction for students with LD, bringing together expertise on learning disabilities and mathematics education to address an area in which there is very little research. 

The main outcomes of the project include (a) a theory of knowing, learning, and teaching connected to students with LDs in the small environment of supplemental and intensive intervention, (b) selected research-based trajectories specific to the conceptual understandings of fractions evidenced by students with LD presented in case study format, and (c) a set of practices and tools for teaching in the small environment (e.g., explicated knowing and learning framework; a set of learning situations to be used for teaching and/or formative assessment in fraction concepts, and suggestions for instructional decision making to aid teachers in designing student-centered instruction both in small groups and individualized formats).

This project was previously funded under award #1253254 and 1446250.


Project Videos

2019 STEM for All Video Showcase

Title: Fractional Reasoning: Students with Learning Disabilities

Presenter(s): Jessica Hunt, Andy Khounmeuang, Kristi Martin, Blain Patterson, & Juanita Silva


Response to Intervention in Mathematics: Beginning Substantive Collaboration between Mathematics Education and Special Education

This project is organizing and hosting a working conference on Response to Intervention (RtI) and related strategies in teaching and assessment in Mathematics. Goals of this work are: To build a community of researchers and practitioners to identify, expand and sustain research needs in this area; to identify and improve the research available related to teaching mathematics within an RtI model; and to develop resources to support teacher's understanding and application of RtI strategies.

Partner Organization(s): 
Award Number: 
1005328
Funding Period: 
Wed, 09/01/2010 to Wed, 02/29/2012
Full Description: 

The National Council of Teachers of Mathematics (NCTM) in collaboration with the Council on Exceptional Children (CEC) is organizing and hosting a focused working conference on Response to Intervention (RtI) and related strategies in teaching and assessment in Mathematics. The ultimate goals of this work are: To build a core community of researchers and practitioners from mathematics education and special education to identify, expand and sustain the research needs in this critical area; to identify and improve the research available related to teaching mathematics within a Response to Intervention model; and to develop professional development resources to support teachers's (pre-service and in-service) understanding and application of research-based RtI strategies in mathematics.

Expected outcomes include: a preliminary analysis of needed research studies; a synthesis of both mathematics education research and special education research around a key question of interest; and examples of content for inclusion in professional development and pre-service teacher education. Results will be disseminated through NCTM and CEC print, web, and conference facilities.

Differentiated Professional Development: Building Mathematics Knowledge for Teaching Struggling Learners

This project is creating and studying a blended professional development model (face-to-face and online) for mathematics teachers and special educators (grades 4-7) with an emphasis on teaching struggling math students in the areas of fractions, decimals, and positive/negative numbers (Common Core State Standards). The model's innovative design differentiates professional learning to address teachers' wide range of prior knowledge, experiences, and interests.

Award Number: 
1020163
Funding Period: 
Wed, 09/01/2010 to Wed, 08/31/2011
Project Evaluator: 
Teresa Duncan
Full Description: 

This project under the direction of the Education Development Center is creating and studying a  professional development model for middle school mathematics teachers with an emphasis on teaching struggling math students in the areas of fractions and rational numbers. There are three components to the PD for teachers: online modules, professional learning communities, and face-to-face workshops. There are four online modules 1) Fraction sense: concepts, addition, and subtraction, 2) Fraction multiplication and division; 3) Decimal and percent operations; and 4) Positive/Negative including concepts and operations. Each module is one week long. There are common sessions and special emphasis ones depending on the needs of the teacher. The project addresses three research questions: 1) To what extent do participating teachers show changes in their knowledge of rational numbers and integers, pedagogical knowledge of and beliefs about instructional practices for struggling students and abilities to use diagnostic approaches to identify and address student difficulties?; 2) To what extent do students of participating teachers increase their mathematical understanding and skill?; and 3) To what extent do students of participating teachers show positive changes in their attitudes toward learning mathematics?

In the first year of work on the professional development program, fifty-five teachers will test the initial components of the differentiated modules. In years two and three an additional 160 teachers will participate in the professional development and research to test efficacy of the professional development model. In addition to this testing, twelve teachers will be selected for intensive case studies. Teacher content knowledge, pedagogical content knowledge, and attitudes will be assessed by various well-validated instruments, and changes in their classroom practice will be assessed by classroom observations. Effects of the teacher professional development on student learning will be evaluated by analysis of data from state assessments and by performance on selected items from NAEP and other standardized tests.

This project will result in a tested innovative model for professional development of mathematics teachers to help them with the critical challenge of assisting students who struggle in learning the core concepts and skills of rational numbers and integers. Deliverables will include the on-line modules, materials for workshop and professional learning community work, new research instruments, and research reports.

INK-12: Teaching and Learning Using Interactive Ink Inscriptions in K-12 (Collaborative Research: Koile)

This is a continuing research project that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The primary products are substantiated research findings on the use of tablet computers and inscriptions in 4th and 5th grade math and science, as well as models for teacher education and use.
Award Number: 
1020152
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider, Education Design Inc.
Full Description: 

The research project continues a collaboration between MIT's Center for Educational Computing Initiatives and TERC focusing on the enhancement of K-12 STEM math and science education by means of technology that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The project builds on the PIs' prior work, which demonstrated that both teachers and students benefit from such technology because they can easily draw and write on a tablet screens, thus using representations not possible with only a typical keyboard and mouse; and they can easily send such ink inscriptions to one another via wireless connectivity. This communication provides teachers the opportunity to view all the students' work and make decisions about which to share anonymously on a public classroom screen or on every student's screen in order to support discussion in a "conversation-based" classroom. Artificial intelligence methods are used to analyze ink inscriptions in order to facilitate selection and discussion of student work.

The project is a series of design experiments beginning with the software that emerged from earlier exploratory work. The PIs conduct two cycles of experiments to examine how tablets affect students learning in 4th and 5th grade mathematics and science. The project research questions and methods focus on systematic monitoring of teachers' and students' responses to the innovation in order to inform the development process. The PIs collect data on teachers' and students' use of the technology and on student learning outcomes and use those data as empirical evidence about the promise of the technology for improving STEM education in K-12 schools. An external evaluator uses parallel data collection, conducting many of the same research activities as the core team and independently providing analysis to be correlated with other data. His involvement is continuous and provides formative evaluation reports to the project through conferences, site visits, and conference calls.

The primary products are substantiated research findings on the use of tablet computers, inscriptions, and networks in 4th and 5 grade classrooms. In addition the PIs develop models for teacher education and use, and demonstrate the utility of artificial intelligence techniques in facilitating use of the technology. With the addition of Malden Public Schools to the list of participating districts, which includes Cambridge Public Schools and Waltham Public Schools from earlier work, the project expands the field test sites to up 20 schools' classrooms.

International Workshop on Mathematics and Science Education: Common Priorities that Promote Collaborative Research

The goal of this workshop is to advance the construction of new knowledge through international cooperation with Chinese counterparts in the teaching and learning of math and science at the elementary level in four areas: curriculum design and assessment; teacher preparation and professional development; effective use of the former; and reaching gifted and underserved populations. Approximately 120 people will attend, including 50 senior U.S. researchers, 25 early career researchers, 15 graduate students and 5 undergraduates.

Award Number: 
0751664
Funding Period: 
Sat, 03/15/2008 to Mon, 02/28/2011

Nurturing Multiplicative Reasoning in Students with Learning Disabilities in a Computerized Conceptual-modeling Environment (NMRSD-CCME)

The purpose of this project is to create a research-based model of how students with learning disabilities (LDs) develop multiplicative reasoning via reform-oriented pedagogy; convert the model into a computer system that dynamically models every students’ evolving conceptions and recommends tasks to promote their advancement to higher level, standard-based multiplicative structures and operations; and study how this tool impacts student outcomes.

Project Email: 
Lead Organization(s): 
Award Number: 
0822296
Funding Period: 
Fri, 08/01/2008 to Wed, 07/31/2013
Project Evaluator: 
Dr. C. Brown
Full Description: 

A Digital Resource for Developing Mathematics Teachers' TPCK

This project aims to advance the preparation of preservice teachers in middle school mathematics, specifically on the topic of proportionality, a centrally important and difficult topic in middle school mathematics that is essential to students’ later success in algebra. To address the need for a workforce of high-quality teachers to teach this mathematics, the project is developing a digital text that could be widely used to communicate the unique transitional nature of middle school mathematics.

Lead Organization(s): 
Award Number: 
0918339
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Mark St. John, Inverness

Pages

Subscribe to Special Education