Assessment

Sensing Science through Modeling: Developing Kindergarten Students' Understanding of Matter and Its Changes

This project will develop a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.

Lead Organization(s): 
Award Number: 
1621299
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Despite recent research demonstrating the capacity of young children to engage deeply with science concepts and practices, challenging science curriculum is often lacking in the early grades. This project addresses this gap by developing a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. To accomplish these goals, the curriculum will include opportunities for students to participate in model-based inquiry in conjunction with the use of digital probeware and simulations that enable students to observe dynamic visualizations and make sense of the phenomena. To support the capacity of kindergarten teachers, a continuous model of teacher development will be implemented.

Throughout development, the project team will collaborate with kindergarten teachers and more than 300 demographically diverse students across eight classrooms in Massachusetts and Indiana. A design based research approach will be used to iteratively design and revise learning activities, technological tools, and assessments that meet the needs and abilities of kindergarten students and teachers. The project team will: 1) work with kindergarten teachers to modify an existing Grade 2 curricular unit for use with their students; 2) design a parallel curricular unit incorporating technology; 3) evaluate both units for feasibility and maturation effects; and 4) iteratively revise and pilot an integrated unit and assess kindergarten student conceptual understanding of matter and its changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.

Modeling Assessment to Enhance Teaching and Learning (Collaborative Research: Wilson)

This project will modify an existing assessment system (BEAR Assessment System) to provide ongoing, instructionally productive evidence to teachers about student learning and to link student work products and formative assessments with summative assessments in models that generate useful estimates of student growth.

Award Number: 
1621265
Funding Period: 
Thu, 12/01/2016 to Mon, 08/31/2020
Full Description: 

Although many in education advocate for evidence-based teaching, implementation of such practices is often quite difficult for teachers. Assessment and accountability data are commonly used for system-level reforms, but are seldom designed to help teachers guide day-to-day instructional decision-making. More useful assessment systems should deliver actionable information to assist in guiding instructional decisions, communicate the development of student knowledge, and integrate various forms of data to assist teachers. Such systems must be logistically feasible to implement, provide suitable grounds for interpreting information about achievement, and exist in a teacher community interested in ongoing feedback about student learning.

This project will modify an existing assessment system (BEAR Assessment System) to provide ongoing, instructionally productive evidence to teachers about student learning and to link student work products and formative assessments with summative assessments in models that generate useful estimates of student growth. To design and test the assessment system, researchers will study teacher integration of assessment tools with instruction via classroom observations, video records, and interviews. Feedback from teachers and observations of their assessment practices will inform revisions to the assessment system. Multiple iterations will focus on how best to represent and display assessment results for tracking individual and group learning. Researchers will investigate new psychometric models that link information from student classroom work, responses to formative assessments, and summative evaluations to provide more reliable estimates of student learning.

Building a Next Generation Diagnostic Assessment and Reporting System within a Learning Trajectory-Based Mathematics Learning Map for Grades 6-8

This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.

Award Number: 
1621254
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project seeks to design a next generation diagnostic assessment using learning progressions and other research (in the learning sciences) to support middle grades mathematics teaching and learning. It will focus on nine large content ideas, and associated Common Core State Standards for Mathematics. The PIs will track students over time, and work within school districts to ensure feasibility and use of the assessment system.

The research will build on prior funding by multiple funding agencies and address four major goals. The partnership seeks to address these goals: 1) revising and strengthening the diagnostic assessments in mathematics by adding new item types and dynamic tools for data gathering 2) studying alternative ways to use measurement models to assess student mathematical progress over time using the concept of learning trajectories, 3) investigating how to assist students and teachers to effectively interpret reports on math progress, both at the individual and the class level, and 4) engineering and studying instructional strategies based on student results and interpretations, as they are implemented within competency-based and personalized learning classrooms. The learning map, assessment system, and analytics are open source and can be used by other research and implementation teams. The project will exhibit broad impact due to the number of states, school districts and varied kinds of schools seeking this kind of resource as a means to improve instruction. Finally, the research project contributes to the nationally supported move to create, use, and apply research based open educational resources at scale.

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Smith)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Award Number: 
1621238
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

Development and Empirical Recovery for a Learning Progression-Based Assessment of the Function Concept

The project will design an assessment based on learning progressions for the concept of function - a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses.

Lead Organization(s): 
Award Number: 
1621117
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The project will design an assessment based on learning progressions for the concept of function. A learning progression describes how students develop understanding of a topic over time. Function is a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design in this project is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses. The project will include accounting for the social and cultural experiences of the middle and high school students when creating assessment tasks. The resources developed should impact mathematics instruction (especially for algebra courses) by creating a learning progression which captures the range of student performance and appropriately places them at distinct levels of performance. The important contribution of the work is the development of a learning progression and related assessment tasks that account for the experiences of students often under-served in mathematics. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The learning progression development will begin by comparing and integrating existing learning progressions and current research on function learning. This project will develop an assessment of student knowledge of function based on learning progressions via empirical recovery (looking for the reconstruction of theoretical levels of the learning theory). Empirical recovery is the process through which data will be collected that reconstruct the various levels, stages, or sequences of said learning progression. The development of tasks and task models will include testing computer-delivered, interactive tasks and rubrics that can be used for human and automated scoring (depending on the task). Item response theory methods will be used to evaluate the assessment tasks' incorporation of the learning progression.


Project Videos

2019 STEM for All Video Showcase

Title: Concept of Function Learning Progression

Presenter(s): Edith Graf, Frank Davis, Chad Milner, Maisha Moses, & Sarah Ohls


Modeling Assessment to Enhance Teaching and Learning (Collaborative Research: Lehrer)

This project will modify an existing assessment system (BEAR Assessment System) to provide ongoing, instructionally productive evidence to teachers about student learning and to link student work products and formative assessments with summative assessments in models that generate useful estimates of student growth.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621088
Funding Period: 
Thu, 12/01/2016 to Mon, 08/31/2020
Full Description: 

Although many in education advocate for evidence-based teaching, implementation of such practices is often quite difficult for teachers. Assessment and accountability data are commonly used for system-level reforms, but are seldom designed to help teachers guide day-to-day instructional decision-making. More useful assessment systems should deliver actionable information to assist in guiding instructional decisions, communicate the development of student knowledge, and integrate various forms of data to assist teachers. Such systems must be logistically feasible to implement, provide suitable grounds for interpreting information about achievement, and exist in a teacher community interested in ongoing feedback about student learning.

This project will modify an existing assessment system (BEAR Assessment System) to provide ongoing, instructionally productive evidence to teachers about student learning and to link student work products and formative assessments with summative assessments in models that generate useful estimates of student growth. To design and test the assessment system, researchers will study teacher integration of assessment tools with instruction via classroom observations, video records, and interviews. Feedback from teachers and observations of their assessment practices will inform revisions to the assessment system. Multiple iterations will focus on how best to represent and display assessment results for tracking individual and group learning. Researchers will investigate new psychometric models that link information from student classroom work, responses to formative assessments, and summative evaluations to provide more reliable estimates of student learning.

Developing Formative Assessment Tools and Routines for Additive Reasoning

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. The project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses.

Lead Organization(s): 
Award Number: 
1620888
Funding Period: 
Thu, 09/01/2016 to Thu, 02/28/2019
Full Description: 

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. OGAP brings together two powerful ideas in mathematics education - formative assessment and research based learning trajectories - to enhance teacher knowledge, instructional practices, and student learning. Building on a proven track record of success with this model, the current project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses. The project involves a development component focused on producing and field testing new resources (including frameworks, item banks, pre-assessments and professional development materials) and a research component designed to improve the implementation of these resources in school settings. The materials that are developed from this project will help teachers be able to more precisely assess student understanding in the major mathematical work of grades K-2 in order to better meet the needs of diverse learners. With the addition of these new early elementary materials, OGAP formative assessment resources will be available for use from kindergarten through grade 8.

Although much attention has been paid to the improvement of early literacy, building strong mathematical foundations and early computational fluency is equally critical for later success in school and preparation for STEM careers. This project will develop and field test tools, resources, and routines that teachers can employ to help young students develop deeper conceptual understandings and more powerful and efficient strategies in the early grades. The project emerged from the needs of school-based practitioners looking for instructional support in the primary grades and uses design-based research methodology. The new materials will be developed, tested, and revised through multiple iterations of implementation in schools. Research-based learning trajectories will be consolidated into simplified frameworks that illustrate the overall progression of major levels of student thinking in the domains of counting, addition, and subtraction. A bank of formative assessment items will be developed, field tested, and refined through a three-phase validation process. Professional development modules will be designed and field tested to support teacher knowledge and effective use of the formative assessment tools and routines. Data collected on key activities in the formative assessment process (including teacher selection of items, analysis of student work, instructional implications, and enacted instructional response) will be used to continually inform development as well as illuminate the conditions under which formative assessment leads to productive changes in instruction and student learning in the classroom. The project will yield a set of field tested tools and resources ready for both broader dissemination and further research on the promise of the intervention, as well as an understanding of how to support effective implementation.

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Jackson)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1620851
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

Connected Biology: Three-Dimensional Learning from Molecules to Populations (Collaborative Research: White)

This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.

Lead Organization(s): 
Award Number: 
1620746
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

This project will contribute to this mission by designing, developing, and examining the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection. These traditionally separate topics will be interlinked and will be designed to engage students in the disciplinary core ideas, crosscutting concepts, and the science and engineering practices defined by the NGSS. Once developed, the curriculum materials will be available online for use in high school biology courses nationwide.

This project will be guided by two main research questions: 1) How does learning progress when students experience a set of coherent biology learning materials that employ the principles of three-dimensional learning?; and 2) How do students' abilities to transfer understanding about the relationships between molecules, cells, organisms, and evolution change over time and from one biological phenomenon to another? The project will follow an iterative development plan involving cycles of designing, developing, testing and refining elements of the new curricular model. The project team will work with master teachers to design learning sequences that use six case studies to provide examples of how genetic and evolutionary processes are interlinked. An online data exploration environment will extend learning by enabling students to simulate phenomena being studied and explore data from multiple experimental trials as they seek patterns and construct cause-and-effect explanations of phenomena. Student learning will be measured using a variety of assessment tools, including multiple-choice assessment of student understanding, surveys, classroom observations and interviews, and embedded assessments and log files from the online learning environment.

Developing A Discourse Observation Tool and Online Professional Development to Promote Science, Oral Language and Literacy Development from the Start of School

The goal of this project is to develop a classroom observation tool and an online professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse.

Lead Organization(s): 
Award Number: 
1620580
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The goal of this project is to develop resources and a professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse. A central component of the Next Generation Science Standards (NGSS) is engaging students in discourse with a focus on formulating and communicating scientific explanations. This project will develop a classroom observation tool that will help teachers examine changes in the quantity and quality of science discourse in K-2 classrooms over time. The project will also develop an online professional development (PD) model that uses the new observation tool to help teachers analyze their own classroom practices and the practice of others to improve classroom efforts to foster improved scientific discourse.

This early stage design and development study will employ a Design-Based Implementation Research (DBIR) approach to develop the new classroom observation tool and online professional development model, and then seek answers to the following research questions: 1) How can a classroom observation measure be developed to effectively capture the range in quality of science discourse in early elementary classrooms?; 2) How can an online PD model be developed based on the new observation tool?; 3) How do teachers' knowledge and instructional practice change over the course of participation in the yearlong PD?; and 4) How does the quantity and quality of science discourse change in K-2 classrooms over the course of teachers' participation in a yearlong online PD experience that is built around the new observation tool? The project will engage 36 teachers and their 36 different classrooms in Michigan and use multiple data sources to understand whether and how teacher knowledge and instructional practices change during participation in the new PD model. Multiple iterations of design, data collection, and refinement will be used to understand how, when, and why features of the PD and observation tool might combine to transform science discourse in early elementary classrooms. In years 3 and 4, the project team will conduct two year-long implementation trials with cohorts of 15 teachers and 5 instructional coaches (experienced science teachers) who will use the PD and tool in order study their implementation and make iterative improvements. The project will also gather data to understand changes in teacher knowledge and practice as well as video data to document changes in classroom discourse.

Pages

Subscribe to Assessment