Mathematics

Fourteenth International Congress on Mathematical Education (ICME14) Travel Grant

This project will support the participation of 53 US K-12 mathematics teachers, graduate students, community college/university mathematicians, mathematics teacher educators, and mathematics education researchers to attend the Fourteenth International Congress for Mathematical Education (ICME-14) in Shanghai, China.

Project Email: 
Lead Organization(s): 
Award Number: 
1908084
Funding Period: 
Sun, 09/01/2019 to Mon, 02/28/2022
Project Evaluator: 
Full Description: 

This project will support the participation of 53 US K-12 mathematics teachers, graduate students, community college/university mathematicians, mathematics teacher educators, and mathematics education researchers to attend the Fourteenth International Congress for Mathematical Education (ICME-14) to be held in Shanghai, China July 9-16, 2020. While mathematics education in the United States has its own culture and expectations, the work and conversations of mathematics educators across the world might contribute to our understanding of issues facing our community today such as curriculum development, the use of technology, strategies for reaching all students, teacher education and professional development. The questions we have as a nation about our own mathematics education might be informed and enlightened by international conversations with others confronting similar issues. A research team led by Sharon McCrone, University of New Hampshire, will prepare a 2020 Fact Book on US mathematics education, building on reports for prior ICMEs. The travel grant will increase the number and diversity of the US mathematics education community attending the international congress, which will enable a broader representation from the US to benefit from interaction with the world's leading mathematics educators.

Through a careful selection process, experts in the field will identify travel recipients most likely to benefit from attending ICME-14 and well-positioned to disseminate insights from their experience. Fostering understanding of international issues and practices among educators and researchers in the US may enhance their capacity to take an informed, global perspective in their work, which, in turn, may benefit their local communities. Digital media will allow educators and classrooms to make and maintain contact across the world, enabling ICME-14 grantees to maintain connections initiated at the meeting and have an impact on large numbers of school children and teachers, both preservice and practicing, in the US. At ICME-14 these educators will engage in learning about the "state of the art" with respect to research and practice in mathematics education from a wide variety of perspectives and will be able to discuss common challenges in teaching and learning mathematics.

Alternative video text
Alternative video text: 

PBS NewsHour Student Reporting Labs StoryMaker: STEM-Integrated Student Journalism

In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. The project aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people.

Project Email: 
Award Number: 
1908515
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
Full Description: 

PBS NewsHour's Student Reporting Labs (SRL) is a youth journalism program that creates transformative educational experiences through video production and community engagement. The program aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people. In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. SRL StoryMaker:STEM will be a free, self-directed online curriculum delivery system designed to guide educators working with middle and high school-age students through videojournalism experiences that highlight and integrate STEM skills, concepts, issues, and potential solutions into the learning process. This program will also develop mentoring connections with 40 journalism professionals and STEM professionals to provide supports for participating teachers and students. The project will recruit and work with about 100 teachers and their students over the course of the project to inform, test, implement and provide feedback on the SRL StoryMaker:STEM platform and resources. The associated research will explore evidence-based strategies for structuring co-learning and mentorship connections for students and teachers with journalists and science content experts around SRL StoryMaker:STEM to best support student and teacher outcomes.

The four-year associated research study will contribute to understanding how teachers collaborate on teaching STEM across academic disciplines through a series of interviews, surveys, and site visits with the pilot teachers and their students using SRL StoryMaker:STEM. The analysis of the data will focus on identifying the benefits of developing a community of teachers who collaborate on teaching STEM across the academic discipline through journalism practice. Specifically, a combination of quantitative and qualitative methods will be used to examine the following research questions: What teacher affordances are necessary for using journalism practices to support STEM learning across academic disciplines? How do teacher perceptions of their school constraints influence their use of STEM-based learning activities? How do teachers from different disciplines teach numerical reasoning, communicating with data, and the other essential STEM thinking skills? How might an online support community be structured to encourage teacher-to-teacher scaffolding related to STEM content given variation in their pedagogical training? Meanwhile, front-end evaluation will identify barriers and opportunities specific to this project. Formative evaluation will focus on how each specific iteration is meeting teachers' needs and aspirations, and summative evaluation will examine teachers' STEM learning and teachers' perception of students' STEM outcomes.

Alternative video text
Alternative video text: 

Looking Back and Looking Forward: Increasing the Impact of Educational Research on Practice

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

Lead Organization(s): 
Award Number: 
1941494
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The focus of the proposed conference is to carefully examine past and current research with an eye toward improving its impact on practice. This conference is designed to create concrete steps that could shape the nature and impact of mathematics education research for years to come. A diverse group of 50 participants will be invited to participate. Participants include 10 experienced K-12 educators whose perspectives will be used to anchor the conference in problems of practice. Other participants represent senior through more junior scholars who have demonstrated a commitment to addressing the disconnect between research and practice, along with technology experts to advise participants on capabilities and innovative uses of modern technologies for instruction, assessment and data management.

The overarching goal for the conference is to help the field of mathematics education think deeply about the most productive ways to answer the following questions: [1] Why hasn't past research had a more direct impact on practice? What can be learned from this historical analysis for future research? [2] What is a possible vision for research that would have a more direct impact on practice? What questions should be asked? What methods should be used? What concrete steps can be taken to launch the new research programs? [3] What are the implications of adopting new kinds of research programs? If they gain traction, how will such changes affect the broader education community and infrastructure, including preservice teacher education, teacher professional development, and the training of future researchers? How should the roles of researchers and teachers change? What incentive structures might motivate these changes? How will new programs of research interact with existing programs?

Improving Evaluations of R&D in STEM Education

The primary goal of this set of workshops is to provide STEM education researchers with the framework, skills, and community they need to implement new developments in causal inference methods into their research.

Project Email: 
Lead Organization(s): 
Award Number: 
1937719
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

The primary goal of this set of workshops is to provide STEM education researchers with the framework, skills, and community they need to implement new developments in causal inference methods into their research. These methods will be immediately implementable in their current (or near future) studies and will result in stronger causal findings, providing higher-quality evidence regarding the potential of new innovations to improve STEM education broadly. Additionally, a secondary goal is to provide the graduate assistants at the workshop (students in statistics) with a strong foundation in the real-world problems facing researchers in STEM education today. By being immersed in this community, the goal is to improve their communication skills, while also providing them with opportunities to develop new methods that address problems facing the STEM education community today.

STEM education research and development studies often focus on the development and iterative refinement of interventions meant to increase STEM participation and skills. Since large-scale randomized experiments are not often possible, researchers typically use correlational methods instead to explore the effects of interventions. Over the past several years, however, statisticians have developed a broad array of methods for understanding causality that do not require these large-scale randomized trials. While these causal inference methods are now common in fields like medicine and education policy, they are much less commonly found in STEM education fields. The purpose of this set of workshops is to introduce STEM education researchers to these methods and how they relate to three research designs they already use: (1) matching on a single variable (e.g., age, gender), (2) pre-test post-test comparisons, and (3) lab experiments. In addition to introducing these new developments, broader discussions of confounding, validity types and trade-offs, design sensitivity, effect size reporting, and questionable research practices (e.g., p-hacking) will also be included.

Alternative video text
Alternative video text: 

The Developmental Emergence and Consequences of Spatial and Math Gender Stereotypes

This project will investigate the development and emergence of spatial gender stereotypes (and their relation to math gender stereotypes) in elementary school-aged children and their impact on parent-child interactions in the pre-school period.

Lead Organization(s): 
Award Number: 
1920732
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

There is currently a gender gap in STEM fields, such that females participate at lower rates and have lower career attainment than their male counterparts. While much research has focused on gender differences in math attitudes, little work has explored how attitudes in a closely related STEM domain, spatial reasoning, may also contribute to the observed gender gap. The proposed research will characterize the acquisition of gender stereotypes in childhood in two key domains critical to success and participation in STEM fields: math and spatial skills. Recent evidence suggests that children acquire math gender stereotypes (i.e., the belief that "math is for boys") as early as 1st - 2nd grades, but less is known about children's attitudes about spatial abilities. This project will be one of the first to investigate the development and emergence of spatial gender stereotypes (and their relation to math gender stereotypes) in elementary school-aged children, and their impact on parent-child interactions in the pre-school period.

Eight behavioral studies involving 1290 children (Pre-K - 4th graders), 240 caregivers, and 180 adults will participate in studies that evaluate an integrated theoretical model of the relations between gender, gender stereotypes, attitudes, and abilities in the domains of math and space. In Series 1, studies will characterize the emergence of and assumptions behind spatial- and math- gender stereotypes in 1st - 4th graders, while determining how they may be acquired. In Series 2, studies will explore the real-world impacts of spatial-gender stereotypes on STEM participation and achievement in childhood. Lastly, Series 3 studies will explore the malleability of these stereotypes in the hopes of identifying ways to ameliorate their impact early in development. The project will provide training for doctoral graduate and undergraduate students. Moreover, this project will support new and ongoing collaborations with local children's museums, which facilitate interactions and communication with families, educators, and the public about the research findings. By being some of the first work to uncover the developmental origins and consequences of math and spatial stereotypes, this work may inform possible future interventions to reduce and/or eliminate the perpetuation of these stereotypes in children, long before they can have greater lifelong impacts.

Early Emergence of Socioeconomic Disparities in Mathematical Understanding

This study will provide foundational knowledge about the activities and interactions in the home environment that drive the early emergence of math skills disparities related to SES.

Project Email: 
Lead Organization(s): 
Award Number: 
1920545
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

The math skills of children from high income families have grown faster than those of children from middle- or low-income families resulting in a significant and persistent gap. These disparities emerge in preschool and are larger by the start of kindergarten. As children progress through school, the gap in math skills persists or even widens. Importantly, SES-related disparities in math skills have implications for long-term academic achievement and educational attainment, as well as access to STEM education and professions in adulthood. As such, there is an urgent need to identify the factors shaping early math development before children start formal schooling. This investigation will provide foundational knowledge about the activities and interactions in the home environment that drive the early emergence of math skills disparities related to SES. In the long term, findings from this work could inform home visitation programs and early care and education curricula aimed at strengthening the early math skills of children living in low resourced communities. The knowledge generated by this study has the potential to enhance equity in access to STEM education and professions for all children.

Using a longitudinal sequential study of two cohorts of socioeconomically diverse 30-month-olds (N = 320) and their parents, the proposed study will strengthen knowledge of the etiology of SES disparities in math skills by addressing three aims. First, it will examine associations between the home learning environment (HLE) and early math skills. Second, it will describe SES disparities in HLE and their implications for math learning. Third, it will test family stress and family culture as pathways through which SES shapes HLE and early math skills. Children will complete assessments of early math skills and other general cognitive abilities at age 30 months and again around 42-47 months. In addition to the child assessments at 30 months, in-home structured observations with a parent, parent surveys, and time diaries will measure the quantity and quality of children's opportunities for math learning at home. To measure family stress, parents will complete questionnaires assessing general stress as well as stress specifically related to performing and teaching math. To measure family culture, parents will complete questionnaires assessing their general and math-specific parenting beliefs and observations of family interactions will be conducted. This study will test whether domain-general and math-specific family stress and culture mediate the relation between HLE and SES. In sum, this study will make contributions to understanding the early emergence of economic disparities in early math skills. Theoretically, it will delineate whether domain-general or math-specific differences in HLE explain disparities in early math skills related to socioeconomic status. It will advance research by concurrently considering the roles of stress and culture in shaping disparities in children's opportunity to learn math in their early home environments. This project is funded by the EHR Core Research program, which emphasizes STEM education research that will generate foundational knowledge in the field.

Alternative video text
Alternative video text: 

Design and Implementation of Immersive Representations of Practice

This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.

Project Email: 
Lead Organization(s): 
Award Number: 
1908159
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

Various researchers have documented that a large proportion of preservice teachers (PSTs) demonstrate less sophisticated professional knowledge for teaching both fractions and multiplication/division. Use of representations of practice (i.e., video, animation), and accompanying annotation technology, are effective in improving such professional knowledge, but PSTs continue to demonstrate a lack of precision in attending to or noticing particular mathematics in classroom scenarios. Fortunately, a new technology, 360-degree video, has emerged as a means of training novices for professional practice. This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction. Specifically, PSTs demonstrate difficulty in synthesizing explicit knowledge learned in the college classroom with tacit professional knowledge situated in professional practice. The initial pilot of the technology resulted in PSTs demonstrating specific attention to the mathematics. The purpose of the project will be to investigate how PSTs' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations (technologically embedded scaffolds). To do this, the project will examine where and what PSTs attend to when viewing 360-degree videos, both at a single point in the classroom and through incorporating multiple camera-perspectives in the same class. Additionally, the project will examine the role of annotation technology as applied to 360-degree video and the potential for variations in annotation technology. Findings will allow for an improved understanding of how teacher educators may support PSTs' tacit and explicit knowledge for teaching. The project will make video experiences publicly available and the platform used in the project to create these video experiences for teacher educators to use, create, and share 360-degree video experiences.

The project will examine how representations of practice can facilitate preservice teachers' professional knowledge for teaching fractions and multiplication/division. The project will: examine the effect of single versus multiple perspective in PSTs' professional knowledge; examine how PSTs use annotation technology in immersive video experiences, and its effect on PSTs' professional knowledge for teaching fractions and multiplication/division; and design a platform for teacher educators to create their own 360 video immersive experiences. Using an iterative design study process, the project team will develop and pilot single and multi-perspective 360-degree video experiences in grade 3-5 classrooms including developing a computer program to join multiple 360-degree videos. They will also develop an annotation tool to allow PSTs to annotate the single and multi-perspective 360 video experiences. Using a convergent mixed methods design, the project team will analyze the quantitative data using multiple regressions of pre-post data on mathematical knowledge for teaching and survey data on PSTs reported immersion and presence in viewing the videos to compare single and multi-perspective 360-degree video data. They will also qualitatively analyze heat maps generated from eye tracking, written responses from PSTs' noticing prompts, and field notes from implementation to examine the effect of single versus multiple perspectives. The team will use similar methods to examine how PSTs use the annotation technology and its effect. The results of the research and the platform will be widely disseminated.

Alternative video text
Alternative video text: 

Fusing Equity and Whole-School STEM Models: A Conference Proposal

This project will plan, implement, and evaluate the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level.

Project Email: 
Lead Organization(s): 
Award Number: 
1907751
Funding Period: 
Thu, 08/01/2019 to Fri, 07/31/2020
Project Evaluator: 
Full Description: 

Interest in whole-school STEM education models is rapidly expanding in the United States, but there is limited agreement on the essential features of effective STEM schools and a limited research base on effective practices. There are also concerns regarding equity issues associated with whole-school STEM models. This project will address these issues by planning, implementing, and evaluating the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level. The conference will include 25 invited participants who have expertise as researchers or practitioners in equity issues or whole-school STEM reform efforts. These participants will discuss how to: 1) Create a collective understanding among a community of stakeholders regarding the role of equity in whole-school STEM models, 2) Map, synthesize, and report the terrain of existing research around the role of equity in whole-school STEM and non-STEM models including both strengths and gaps in the research base, and 3) Identify central issues and questions that can guide future research in order to prioritize these topics and initiate productive collaborations among participants to pursue answers to critical questions. These discussions will result in two key outcomes: 1) A practitioner centered logic model that integrates equity into the design and implementation of STEM at the whole-school level, and 2) A research model that supports building an empirical understanding of the intersection between equity and whole-school STEM programs.

There are various models of STEM-centered schools, with the most significant difference across models being the enrollment criteria. This project will focus on Inclusive STEM Schools which have open enrollment and provide paths for all students to advanced learning or careers in STEM fields. Federal initiatives have promoted and supported expansion of these schools, but there is little research on the impacts of these schools, and even less research on the role of equity considerations on the design and implementation of these schools. This project will address the limited research base by focusing specifically on culturally relevant and culturally responsive programing for inclusive STEM schools and initiating a research agenda on the role of equity in designing inclusive STEM programs. The project will seek to identify effective practices, and document outcomes on diverse populations.

Alternative video text
Alternative video text: 

Human Variance and Assessment for Learning Implications for Diverse Learners of STEM: A National Conference

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests.

Lead Organization(s): 
Award Number: 
1939192
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The conference purpose is to stimulate a national conversation concerning the relationships between assessment, teaching and learning that include scholarly research and development of tests; members of city and state boards of education; officials from states and major school systems; policymakers; and representatives of teachers' associations and parents' associations. This conference aims to attract these important professionals has important co-sponsors like the Urban Institute. This national conference flows from the work of the Gordon Commission on the Future of Assessment for Education that addressed the advancement of achievement in STEM disciplines (PreK-12) for students who are underrepresented among high achieving students. This issue of advancement of underrepresented high achieving students has received little concentrated effort and a conference would help in providing greater understanding of this special concern, which includes a student in poverty in complexed family structures.

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests. The conference will stimulate national conversation and ultimately a market that demands educational assessments that inform and improve teaching and learning transactions. The conference will be organized around four conceptual and theoretical papers that focus on the knowledge base upon which six concurrent workshops will be based. The four papers are: (1) Human Diversity and Assessment; (2) The Limits of Test Bias and Its Corrections; (3) Towards an Assessment Science Capable of Informing and Improving Learning; and  (4) Assessment in the Service of Learning. The workshops will focus on models of pedagogical practice that show promise for informing and improving teaching and learning processes and their outcomes. These issues will be discussed by 11-15 expert presenters who understand student learning and the types of information gleaned from different types of assessments. The attention to URMs and their needs and contexts are prioritized in discussions surrounding measurement science and the integration of assessment. Several important issues that address understanding of student learning, and the relationship between the varieties of information concerning students that can be accessed through assessments are: (1) The importance of the broader and more productive use of educational testing to improve the learning of STEM subject matter and values; (2) Curriculum embedded assessment and the reduction in disparities in achievement by STEM learners from diverse social divisions; (3) Innovative procedures and programs for the use of data concerning learners and teaching and learning transactions in the teaching and learning of STEM with learners who are underrepresented among high achieving STEM learners.

STEM for All Collaboratory: Accelerating Dissemination and Fostering Collaborations for STEM Educational Research and Development

This project will capitalize on the STEM for All Video Showcase and extend its impact by creating a STEM for All Multiplex. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts.

Lead Organization(s): 
Award Number: 
1922641
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

The STEM for All Collaboratory will advance educational research and development through the creation and facilitation of two related and interactive platforms: the STEM for All Video Showcase, and the STEM for All Multiplex. The Video Showcase provides an annual, online, week-long, interactive event where hundreds of educational researchers and developers create, share, and discuss 3-minute videos of their federally funded work to improve Science, Mathematics, Engineering, Technology and Computer Science education. Several years of successful Video Showcases have contributed to a rich database of videos showcasing innovative approaches to STEM education. To capitalize on the growing resource and extend its impact, this project will create a STEM for All Multiplex, a unique contribution to STEM education. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts. The Multiplex will host interactive, monthly, thematic online events related to emerging research and practices to improve STEM and Computer Science education in formal and informal environments. Each thematic event will include selected video presentations, expert panels, resources, interactive discussions and a synthesis of lessons learned. All events will be accessible and open to the public. The project will continue to host and facilitate the annual Video Showcase event which has attracted over 70,000 people from over 180 countries over the course of a year. This effort will be guided by a collaboration with NSF resource centers, learning networks, and STEM professional organizations, and will advance the STEM research and education missions of the 11 collaborating organizations.

The Video Showcase and the Multiplex will foster increased dissemination of federally funded work and will effectively share NSF's investments aimed at improving STEM education. It will enable presenters to learn with and from each other, offering and receiving feedback, critique, and queries that will improve work in progress and to facilitate new collaborations for educational research. It will connect researchers with practitioners, enabling both groups to benefit from each other's knowledge and perspective. Further, it will connect seasoned investigators with aspiring investigators from diverse backgrounds, including those from Minority Serving Institutions. It will thereby enable new researchers to broaden their knowledge of currently funded efforts while also providing them with the opportunity to discuss resources, methodology and impact measures with the investigators. Hence, the project has the potential to broaden the future pool of investigators in STEM educational research. This work will further contribute to the STEM education field through its research on the ways that this multimedia environment can improve currently funded projects, catalyze new efforts and collaborations, build the capacity of emerging diverse leadership, and connect research and practice.

Pages

Subscribe to Mathematics