Geometry

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Donovan)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503342
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Fri, 07/31/2020
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.


Project Videos

2019 STEM for All Video Showcase

Title: Designing PD for Math Educators of Students Who are ELs

Presenter(s): Peter Tierney-Fife, Pamela Buffington, Josephine Louie, Jill Neumayer Depiper, & Johannah Nikula

2016 STEM for All Video Showcase

Title: Visual Access to Mathematics: Supporting Teachers of ELs

Presenter(s): Johannah Nikula, Pam Buffington, Mark Driscoll & Peter Tierney-Fife


An Efficacy Study of the Learning and Teaching Geometry PD Materials: Examining Impact and Context-Based Adaptations

This study will examine the impact of the Learning and Teaching Geometry (LTG) professional development for secondary mathematics teachers on the teachers' knowledge and classroom instruction, as well as on their students' learning. As the nation invests vast resources in the professional development of teachers to meet new curriculum and instruction challenges, exploring the efficacy of professional development is important to understand how best to direct those resources.

Lead Organization(s): 
Award Number: 
1503399
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. There are few examples of research that demonstrates causal impacts of professional development on teachers' knowledge and practice and student learning. This study will examine the impact of the Learning and Teaching Geometry (LTG) professional development for secondary mathematics teachers on the teachers' knowledge and classroom instruction, as well as on their students' learning. As the nation invests vast resources in the professional development of teachers to meet new curriculum and instruction challenges, exploring the efficacy of professional development is important to understand how best to direct those resources.

Using a cluster randomized design, the project will sample from 132 teachers (66 per condition) from 28 middle and high schools to participate in a 2-year implementation of the LTG professional development, facilitated by highly trained facilitators to study the efficacy of the materials. The project will monitor the fiedity of implementation of the LTG using a professional development session logging tool and Facilitator Interview Protocol. Outcome measures include measures of teacher knowledge, teaching practice, and student learning of geometry. Analyses will include two- and three-level hierarchical linear models to estimate the effects of participation in the LTG professional development and growth over time.

CAREER: Proof in Secondary Classrooms: Decomposing a Central Mathematical Practice

This project will develop an intervention to support the teaching and learning of proof in the context of geometry.

Lead Organization(s): 
Award Number: 
1453493
Funding Period: 
Wed, 07/15/2015 to Tue, 08/31/2021
Full Description: 

This project, funded as part of the CAREER program, would add to the knowledge base on the teaching and learning of proof in the context of the most prevalent course/topic in which proof is taught in the K-12 curriculum, geometry. Given the centrality of the role of proof, and the persistent difficulties in teaching proof in the K-12 and undergraduate curriculum, the topic is of vital importance. The work is novel, focusing on an area of proof that is understudied, the introduction of students to the topic of proof. While building on prior work in proof, the project will tackle an important area of beginning to teach proof, which may lead to broader innovations at both the K-12 and undergraduate level. The project will produce a resource, a set of lessons, which can be used widely and are likely to be broadly disseminated based on the PI's previous NSF-supported work, which has been broadly disseminated to practitioner audiences. 

The goal of the project is to develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own. The 5-year design and development study builds on the researcher's prior work from a Knowles Science Teaching Fellowship (KSTF) grant to study how teachers introduce proof to students. This study will build on the prior work to refine a framework for introducing proof developed in the KSTF study. Using this framework the researcher will work with five high school geometry teachers to develop lessons via Lesson Study methods to introduce sub-goals of proof. The PI will study the impact of the use of these lessons on students' ability to perform proofs, and compare to students of ten teachers who will not have participated in the intervention.

 

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417040
Funding Period: 
Tue, 07/01/2014 to Sat, 06/30/2018
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Re-Imagining Video-based Online Learning

Despite the tremendous growth in the availability of mathematics videos online, little research has investigated student learning from them. The goal of this exploratory project is to create, investigate, and provide evidence of promise for a model of online videos that embodies a more expansive vision of both the nature of the content and the pedagogical approach than is currently represented in YouTube-style lessons.

Award Number: 
1416789
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

The goal of this exploratory project is to create, investigate, and provide evidence of promise for a model of online videos that embodies a more expansive vision of both the nature of the content and the pedagogical approach than is currently represented in YouTube-style lessons. This goal is pursued through the development and research of videos for two mathematics units--one focused on proportional reasoning at the middle grades level and the other focused on quadratic functions at the high school level, using an approach that could be applied to any STEM content area. The media attention on the Khan Academy and the wide array of massive open online courses has highlighted the internet phenomenon of widespread accessibility to mathematics lessons, which offer many benefits, such as student control of the pace of learning and earlier access to advanced topics than is often possible in public schools. Yet, despite the huge range of topics presented in online videos, there is surprising uniformity in the procedural emphasis of the content and in the expository mode of presentation. Moving beyond the types of videos now used, primarily recorded lectures that replicate traditional classroom experience, this project advances our understanding about how students learn from video and from watching others learn - vicarious learning - as opposed to watching an expert. This project addresses the need for an alternative approach. Rather than relying on an expository style, the videos produced for this project focus on pairs of students, highlighting their dialogue, explanations and alternative conceptions. This alternative has the potential to contribute to learning sciences and to develop a usable tool.

Despite the tremendous growth in the availability of mathematics videos online, little research has investigated student learning from them. This project develops dialogue-intensive videos in which children justify and explain their reasoning, elucidate their own comprehension of mathematical situations, and argue for and against various ideas and strategies. According to Wegerif (2007), such vicarious participation in a dialogic community may help learners take the perspective of another in a discussion, thus "expanding the spaces of learning" through digital technology. Consequently, a major contribution of this proposed work will be a set of four vicarious learning studies. Two qualitative studies investigate the particular meanings and ways of reasoning that learners appropriate from observing the dialogue of the students in the videos, as well as the learning trajectories of vicarious learners for each unit. Two quantitative studies isolate and test the effectiveness of the dialogic and the conceptual components of the model by comparing learning outcome gains for (a) conceptual dialogic versus conceptual expository conditions, and (b) dialogic conceptual versus dialogic procedural conditions. Another mark of the originality of the proposed work is the set of vicarious learning studies that contributes to the emerging literature across several dimensions, by (a) using secondary students rather than undergraduates; (b) exploring longer periods of learning, which is more conducive to deeper understanding; and (c) examining the nature of reasoning that is possible, not just the effectiveness of the approach.

Preparing Urban Middle Grades Mathematics Teachers to Teach Argumentation Throughout the School Year

The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.

Lead Organization(s): 
Award Number: 
1417895
Funding Period: 
Sun, 06/15/2014 to Thu, 05/31/2018
Full Description: 

The project is an important study that builds on prior research to bring a comprehensive professional development program to another urban school district, The District of Columbia Public Schools. The objective of this full research and development project is to develop a toolkit  that provides resources and practices for inservice middle grades mathematics teachers to support mathematical argumentation throughout the school year. Mathematical argumentation, the construction and critique of mathematical conjectures and justifications, is a fundamental disciplinary practice in mathematics that students often never master. Building on a proof of concept of the project's approach ifrom two prior NSF-funded studies, this project expands the model to help teachers support mathematical argumentation all year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas. Demonstrating this program in the nation's capital will likely attract broad interest and produces important knowledge about how to implement mathematical practices in urban settings. Increasing mathematical argumentation in schools has the potential for dramatic contributions to students' achievement and participation in 21st century workplaces.

Mathematical argumentation is rich discussion in which students take on mathematical authority and co-construct conjectures and justifications. For many teachers, supporting such discourse is challenging; many are most comfortable with Initiate-Respond-Evaluate types of practices and/or have insufficient content understanding. The professional development trains teachers to be disciplined improvisers -- professionals with a toolkit of tools, knowledge, and practices to be deployed creatively and responsively as mathematical argumentation unfolds. This discipline includes establishing classroom norms and planning lessons for argumentation. The model's theory of action has four design principles: provide the toolkit, use simulations of the classroom to practice improvising, support learning of key content, and provide job-embedded, technology-enabled supports for using new practices all year. Three yearlong studies will address design, feasibility, and promise. In Study 1 the team co-designs tools with District of Columbia Public Schools staff. Study 2 is a feasibility study to examine program implementation, identify barriers and facilitators, and inform improvements. Study 3 is a quasi-experimental pilot to test the promise for achieving intended outcomes: expanding teachers' content knowledge and support of mathematical argumentation, and increasing students' mathematical argumentation in the classroom and spoken argumentation proficiency. The studies will result in a yearlong professional development program with documentation of the theory of action, design decisions, pilot data, and instrument technical qualities.

The Validity of Technology-Enhanced Assessment in Geometry

This project contributes to the small research base by exploring the validity of Technology-Enhanced Items (TEIs) in the context of elementary geometry. The project addresses three research questions: 1) To what extent are TEIs a valid measurement of geometry standards in the elementary grades?; 2) To what extent do TEIs provide an improved measurement compared to SR items?; and 3) What are the general characteristics of mathematics standards that might be better measured through TEIs?

Lead Organization(s): 
Award Number: 
1316557
Funding Period: 
Thu, 08/01/2013 to Thu, 12/31/2015
Full Description: 

Assessment developers, state departments of education, and national consortia have focused extensive efforts on including Technology-Enhanced Items (TEIs) on summative and formative assessments. TEIs have a number of potential benefits over traditional, selected-response (SR) items, including the potential to measure higher-level constructs, the reduction of the effects of test-taking skills and guessing, the capture of rich diagnostic information, the reduction of cognitive load from non-relevant constructs, and the engaging nature of their design. The first three benefits are true of constructed-response (CR) items, but TEIs have the added benefit of being automatically scored by computer. Despite the potential benefits of TEIs, and the strong push to include these types of items in assessments, there is a death of research on the validity of inferences made by TEIs and on whether TEIs provide improved measurement over traditional item types. The Validity of Technology-Enhanced Assessment in Geometry (VTAG) project contributes to the small research base by exploring the validity of TEIs in the context of elementary geometry.

The project addresses three research questions:

RQ1: To what extent are TEIs a valid measurement of geometry standards in the elementary grades?

RQ2: To what extent do TEIs provide an improved measurement compared to SR items?

RQ3: What are the general characteristics of mathematics standards that might be better measured through TEIs?

To address these research questions, the researchers develop 20 items (ten SR items and 10 TEIs) for each of the seven Common Core State Standards in fourth and fifth grade geometry. The researchers collect validity evidence using expert review, cognitive labs, and classroom administration of the items. The first two research questions are addressed by evaluating the validity of the items based on a variety of sources, including test content, internal structure, the relationship to other variables, and student response processes. To address the third research question, informed by the results of the prior two, the researchers use qualitative analysis to identify common themes of the standards that were identified as being better measured through TEIs.

Developing Rich Media-Based Materials for Practice-Based Teacher Education

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

Award Number: 
1316241
Funding Period: 
Thu, 08/15/2013 to Tue, 07/31/2018
Full Description: 

The 4-year research and development project, Developing Rich Media-based Materials for Practice-based Teacher Education, is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom. Furthermore, teacher educators and teachers can react to such animations or image sequences by making their own depictions of alternative moves by students or teachers in classroom interaction. And all of that can take place in an on-line, cloud-based environment that also supports discussion fora, questionnaires, and the kinds of capabilities associated with learning management systems. Such technologies offer important affordances to teacher educators seeking to provide candidates with course-based experiences that emphasize the development of practice-based skills. The focus of the project is on mathematics teacher education. This joint project of the University of Maryland Center for Mathematics Education and the University of Michigan will produce 6 to 8 field-tested modules for use in different courses that are a part of mathematics teacher preparation programs. The following two-pronged research question will be resolved: What are the affordances and constraints of the modules and the environment as supports for: (1) practice based teacher education and (2) a shift toward blended teacher education?

The project involves the following activities: (1) a teacher education materials development component; (2) a related evaluation component; and (3) two research components. The development phase seeks to develop both the LessonSketch.org platform and six to eight mathematics teacher education modules for use in preservice teacher education programs from around the country. The modules will be written with practice-based teacher education goals in mind and will use the capacities of the LessonSketch.org platform as a vehicle for using rich-media artifacts of teaching with preservice teacher candidates. LessonSketch Teacher Education Research and Development Fellows will be chosen through a competitive application process. They will develop their respective modules along with teams of colleagues that will be recruited to form their inquiry group and pilot the module activities. The evaluation activity will focus on the materials development aspect of the project. Data will be collected by the LessonSketch platform, which includes interviews with Fellows and their teams, perspectives of module writers, descriptive statistics of module use, and feedback from both teacher educator and preservice teacher end-users about the quality of their experiences. The first research activity of the project is design research on the kinds of technological infrastructure that are useful for practice-based teacher education. The PIs will identify tools that teacher educators need and want beyond the current capabilities for web-based support for use of rich media and will produce prototype tools inside the LessonSketch environment to meet these needs. The second research activity of the project will supplement the evaluation activity by examining the implementation of two of the modules in detail. This aspect of the research will examine the goals of the intended curriculum, the proposed modes of media use, the fidelity of the implemented curriculum, and learnings produced by preservice teachers. This research activity will help the field understand the degree to which practice-based teacher education that is mediated by an online access to rich media would be a kind of practice that could be easily incorporated into existing teacher education structures.

The project will produce 6 to 8 LessonSketch modules for use in teacher education classes. Each module will be implemented in at least eight teacher education classes across the country, which means that between 720 and 960 preservice teacher candidates will study the materials. The project aims to shift the field toward practice-based teacher education by supporting university programs to implement classroom-driven activities that will produce mathematics teachers with strong capabilities to teach mathematics effectively and meaningfully.

CAREER: Reciprocal Noticing: Latino/a Students and Teachers Constructing Common Resources in Mathematics

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

Lead Organization(s): 
Award Number: 
1253822
Funding Period: 
Wed, 05/15/2013 to Mon, 04/30/2018
Full Description: 

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners. Thus, the focus of the project is on developing the concept of reciprocal noticing as a way to support better interactions between teachers and Latino/a students in elementary mathematics classrooms.

The project uses a transformative teaching experiment methodology and is guided by the initial conjectures that to make mathematics classrooms intellectually attractive places, Latino/a students and teachers need to learn to develop common resources for teaching and learning mathematics, and that reciprocal noticing as a process supports teachers and students in developing these common resources for teaching and learning mathematics. The project design centers around two research questions:How do teachers and Latino/a students tune to each other's mathematical ideas and explicitly indicate to one another how their ideas are important for discourse that promotes mathematical reasoning in classrooms characterized by reciprocal noticing? What patterns emerge across four classrooms when teachers and Latino/a students engage in reciprocal noticing?

The concept of reciprocal noticing can significantly enhance emerging research in mathematics education about the importance of teacher noticing. Further, this revised concept of noticing can transform mathematics classroom to better support English Language Learners.

The PI will incorporate project findings and videos into methods courses for preservice elementary teachers.

Pages

Subscribe to Geometry