English Language Learners

Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

Award Number: 
1908481
Funding Period: 
Mon, 07/15/2019 to Fri, 06/30/2023
Full Description: 

High-quality mathematics instruction remains uncommon and opportunities for students to develop the mathematical understanding are not distributed equally. This is particularly true for students of color and students for whom English is not their first language. While educational research has made progress in identifying practices that are considered high-quality, little attention has been given to specific instructional practices that support historically marginalized groups of students particularly as they participate in more rigorous mathematics. The main goal is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. In addition, the project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

This project will make use of two existing large-scale datasets focusing on mathematics teachers to develop rubrics on mathematics instructional quality. The datasets include nearly 3,000 video-recorded mathematics lessons and student achievement records from students in Grades 3 through 8. The four phases of this research and development project include training material development, an observation and rubric generalizability study, a coder reliability study, and structural analysis. Data analysis plans involve case studies, exploratory and confirmatory factor analyses, and cognitive interviews. 

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences Collaborative Research: Metcalf)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Lead Organization(s): 
Award Number: 
1907398
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Baker)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Lead Organization(s): 
Award Number: 
1907437
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Gagnon)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Project Email: 
Award Number: 
1907384
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Project Evaluator: 
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

Alternative video text
Alternative video text: 

Design Research on the Teaching and Learning of Conceptual Understanding in High School Chemistry Though the Use of Dynamic Visualizations of Physical and Chemical Changes

The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).

Lead Organization(s): 
Award Number: 
1908121
Funding Period: 
Sun, 09/01/2019 to Sat, 08/31/2024
Full Description: 

This is a late-stage design and development proposal in the teaching strand which addresses the teaching and learning of chemistry at the secondary level, grades 10-12. There is a critical need to transform chemistry teaching and learning from an emphasis on description of phenomena to deep understanding consistent with the Next Generation Science Standards (NGSS). The project will establish a sustained community of practice of teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms). With a focus on traditionally under-served groups including English Language Learners, the project will impact up to 80,000 high school chemistry students from a broad range of socioeconomic, geographic, and racial backgrounds.

This project will develop teachers' knowledge and skills to help their students build accurate molecular-level mental models to explain phenomena as opposed to the overemphasis on description with abstract symbolism and language. Three chemistry teacher cohorts (N = 64) will participate in intensive nstitutes to learn the research foundation and pedagogical moves for the VisChem approach. The approach uses carefully produced dynamic visualizations with teaching strategies informed by a cognitive learning model. Key to VisChem is communication of internal visualizations using storyboards (drawings with explanation) of chemical and physical changes. The project will use an iterative research design examining teacher and student learning in the Institutes and how they implement the learning in classrooms. Data collected will include teachers' storyboards, classroom videos, and pre/post student assessments. Evaluation will provide iterative feedback to incrementally improve the institutes during the project.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Linnenbrink-Garcia)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Lead Organization(s): 
Award Number: 
1813047
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

Using Technology to Capture Classroom Interactions: The Design, Validation, and Dissemination of a Formative Assessment of Instruction Tool for Diverse K-8 Mathematics Classrooms

This project will refine, expand, and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students.

Lead Organization(s): 
Award Number: 
1814114
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 

An important aspect of mathematics teaching and learning is the provision of timely and targeted feedback to students and teachers on the teaching and learning processes. However, many of the tools and resources focused on providing such feedback (e.g., formative assessment) are aimed at helping students. However, formative assessment of teaching can be equally transformative for teachers and school leaders and is a key component of improved teacher practice. This project will refine, expand and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students. The tablet or computer-based tool is intended for use with teacher leaders, principals, coaches, and others interested in assessing teacher practice in a formative way.

This project will continue the development of the MHT through: (1) the integration of an access component; (2) analysis of videos collected during prior studies covering a diverse set of classrooms across the K-8 spectrum; (2) a validation study using validity-argument approach; and (3) the development, piloting, and refinement of professional development modules that will guide math educators, researchers, and practitioners in using the MHT effectively as a formative assessment of instruction. The revised MHT will be validated through analyses of video data from a range of K-8 classrooms with varying demographics and contexts such as socio-economic status, language backgrounds, gender, school settings (e.g., urban, rural, suburban), and race, with particular attention to increasing accessibility to mathematics learning by students who are traditionally underserved, including emergent bilingual students. The data analysis plan involves video coding with multiple checks on reliability, dimensionality analysis with optimal scaling, correlation analysis, and hierarchical linear modeling.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Enhancing Teacher and Student Understanding of Engineering in K-5 Bilingual Programs

This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Lead Organization(s): 
Award Number: 
1814258
Funding Period: 
Mon, 10/01/2018 to Thu, 09/30/2021
Full Description: 

Engineering is part of everyone's local community and daily activities yet opportunities to learn about engineering are often absent from elementary school classrooms. Further, little is known about how teachers' and students' conceptions of engineering relate to aspects of their local community such as language and culture. Knowing more about this is important because students' perceptions of mismatch between their personal culture and the engineering field contributes to the continued underrepresentation of minorities in the profession. This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Consistent with the aims of the DRK-12 program, this project will advance understanding of how engineering education materials can be adapted to the characteristics of teachers, students, and the communities that they reside in. Further, its focus on bilingual classrooms will bring new perspectives to characterizations of the engineering field and its role in different cultures and societies. Over a three-year period, the team will investigate these issues by collecting data from 24 teachers (12 from each location). Data will be collected via surveys, interviews, discussion of instructional examples, videos of teachers' classroom instruction and analysis of artifacts such as teachers' lesson plans. Teachers will collaborate and function as a professional co-learning community called instructional rounds by participating and providing feedback synchronously in face-to-face settings and via the use of digital apps. Project findings can lead to teaching guidelines, practices, and briefs that inform efforts to successfully integrate bilingual engineering curriculum at the elementary grades. This work also has the potential to create professional development models of success for K-5 teachers in bilingual programs and enhance engineering teaching strategies and methods at these early grade levels.

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Pages

Subscribe to English Language Learners