Broadening Participation

Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418270
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

Reclaiming Access to Inquiry-based Science Education (RAISE) for Incarcerated Students

This project will develop a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

Award Number: 
1418152
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

This project is unique in targeting arguably the most vulnerable learners in the American education system: youth confined in juvenile corrections facilities. Three primary problems confronting science education in these settings are: (1) inadequate curriculum and resources; (2) inadequately prepared and supported teachers; and (3) a heterogeneous group of learners, many of whom have disabilities, are disengaged, and/or lack reading and mathematics skills. Failure to address these challenges and the broader educational needs of incarcerated juveniles has broad implications for society, so this project is timely and has high potential for broad impacts.

To address these problems project personnel will employ an iterative development process to develop a curriculum designed to increase access to and mastery of science content, concepts, and inquiry skills critical for careers in the 21st Century STEM workforce. They will then prepare teachers to implement the program in pilot testing in juvenile corrections facilities in Massachusetts. Specifically, the investigators will: (1) align and adapt an existing biology curriculum using Common Core State Standards and Universal Design for Learning principles; (2) develop all materials, digital supports and scaffolds, virtual learning environments and labs, assessments, and teacher professional development materials for one curriculum unit; (3) conduct usability evaluation of all materials and use the results to refine and finalize two curriculum units; (4) prepare teachers to implement the biology program in juvenile corrections education settings; (5) conduct a quasi-experimental study to examine the impacts of the biology program on the content knowledge and inquiry skills of students, their interests, and their levels of engagement; and, (6) disseminate the findings to various constituency groups. The final product will be a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

Preparing Urban Middle Grades Mathematics Teachers to Teach Argumentation Throughout the School Year

The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.

Lead Organization(s): 
Award Number: 
1417895
Funding Period: 
Sun, 06/15/2014 to Thu, 05/31/2018
Full Description: 

The project is an important study that builds on prior research to bring a comprehensive professional development program to another urban school district, The District of Columbia Public Schools. The objective of this full research and development project is to develop a toolkit  that provides resources and practices for inservice middle grades mathematics teachers to support mathematical argumentation throughout the school year. Mathematical argumentation, the construction and critique of mathematical conjectures and justifications, is a fundamental disciplinary practice in mathematics that students often never master. Building on a proof of concept of the project's approach ifrom two prior NSF-funded studies, this project expands the model to help teachers support mathematical argumentation all year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas. Demonstrating this program in the nation's capital will likely attract broad interest and produces important knowledge about how to implement mathematical practices in urban settings. Increasing mathematical argumentation in schools has the potential for dramatic contributions to students' achievement and participation in 21st century workplaces.

Mathematical argumentation is rich discussion in which students take on mathematical authority and co-construct conjectures and justifications. For many teachers, supporting such discourse is challenging; many are most comfortable with Initiate-Respond-Evaluate types of practices and/or have insufficient content understanding. The professional development trains teachers to be disciplined improvisers -- professionals with a toolkit of tools, knowledge, and practices to be deployed creatively and responsively as mathematical argumentation unfolds. This discipline includes establishing classroom norms and planning lessons for argumentation. The model's theory of action has four design principles: provide the toolkit, use simulations of the classroom to practice improvising, support learning of key content, and provide job-embedded, technology-enabled supports for using new practices all year. Three yearlong studies will address design, feasibility, and promise. In Study 1 the team co-designs tools with District of Columbia Public Schools staff. Study 2 is a feasibility study to examine program implementation, identify barriers and facilitators, and inform improvements. Study 3 is a quasi-experimental pilot to test the promise for achieving intended outcomes: expanding teachers' content knowledge and support of mathematical argumentation, and increasing students' mathematical argumentation in the classroom and spoken argumentation proficiency. The studies will result in a yearlong professional development program with documentation of the theory of action, design decisions, pilot data, and instrument technical qualities.

Learning Trajectories in Grades K-2 Children's Understanding of Algebraic Relationships

This project will use classroom-based research to teach children about important algebraic concepts and to carefully explore how children come to understand these concepts. The primary goal is to identify levels of sophistication in children's thinking as it develops through instruction. Understanding how children's thinking develops will provide a critical foundation for designing curricula, developing content standards, and informing educational policies.

Lead Organization(s): 
Award Number: 
1415509
Funding Period: 
Tue, 07/15/2014 to Thu, 06/30/2016
Full Description: 

Algebra is a central concern in school mathematics education. Its historical gatekeeper role in limiting students' career and life choices is well documented. In recent years, the response has been to reframe algebra as a K-12 endeavor. To this end, research on children's algebraic thinking in grades 3-5 shows that students can begin to understand algebraic concepts in elementary grades that they will later explore more formally. However, there is much that is unknown about how children in grades K-2 make sense of algebraic concepts appropriate for their age. This project aims to understand specific ways in which grades K-2 children begin to think algebraically. It will identify how children understand mathematical relationships, how they represent the relationships they notice, and how they use these relationships as building blocks for more sophisticated thinking. The project will use classroom-based research to teach children about important algebraic concepts and to carefully explore how children come to understand these concepts. The primary goal is to identify levels of sophistication in children's thinking as it develops through instruction. Understanding how children's thinking develops will provide a critical foundation for designing curricula, developing content standards, and informing educational policies, all in ways that can help children become successful in algebra and have wider access to STEM-related careers.

While college and career readiness standards point to the role of algebra beginning in kindergarten, the limited research base in grades K-2 restricts algebra's potential in K-2 classrooms. This project will develop cognitive foundations regarding how children learn to generalize, represent, and reason with algebraic relationships. Such findings will inform both the design of new interventions and resources to strengthen algebra learning in grades K-2 and the improvement of educational policies, practices, and resources. The project will use design research to identify: (1) learning trajectories as cognitive models of how grades K-2 children learn to generalize, represent, and reason with algebraic relationships within content dimensions where these practices can occur (e.g., generalized arithmetic); (2) critical junctures in the development of these trajectories; and (3) characteristics of tasks and instruction that facilitate movement along the trajectories. The project's design will include the use of classroom teaching experiments that incorporate: (1) instructional design and planning; (2) ongoing analysis of classroom events; and (3) retrospective analysis of all data sources generated in the course of the experiment. This will allow for the development and empirical validation of hypothesized trajectories in students' understanding of algebraic relationships. This exploratory research will contribute critical early-grade cognitive foundations of K-12 teaching and learning algebra that can help democratize access to student populations historically marginalized by a traditional approach to teaching algebra. Moreover, the project will occur in demographically diverse school districts, thereby increasing the generalizability of findings across settings.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Focus on Energy: Preparing Elementary Teachers to Meet the NGSS Challenge (Collaborative Research: Vokos)

This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418211
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy.

This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.

EarSketch: An Authentic, Studio-based STEAM Approach to High School Computing Education

This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses.

Award Number: 
1417835
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Project Evaluator: 
Mary Moriarity
Full Description: 

This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses. The project is grounded on the premise that EarSketch, a STEM + Art (STEAM) learning environment, embodies authenticity (i.e., its cultural and industry relevance in both arts and STEM domains), along with a context that facilitates communication and collaboration among students (i.e., through a studio-based learning approach). These elements are critical to achieving successful outcomes across diverse student populations. Using agent-based modeling, the research team will investigate what factors enhance or impede implementation of authentic STEAM tools in different school settings.

The researchers will be engaged in a multi-stage process to develop: a) an implementation-ready, web-based EarSketch learning environment that integrates programming, digital audio workstation, curriculum, audio loop library, and social sharing features, along with studio-based learning functionality to support student presentation, critique, discussion, and collaboration; and b) an online professional learning course for teachers adopting EarSketch in Computer Science Principles courses. Using these resources, the team will conduct a quasi-experimental study of EarSketch in Computer Science Principles high school courses across the state of Georgia; measure student learning and engagement across multiple demographic categories; and determine to what extent an EarSketch-based CS Principles course promotes student achievement and engagement across different student populations. The project will include measures of student performance, creativity, collaboration, and communication in student programming tasks to determine the extent to which studio-based learning in EarSketch promotes success in these important areas. An agent-based modeling framework in multiple school settings will be developed to determine what factors enhance or impede implementation of EarSketch under conditions of routine practice.

Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

Award Number: 
1418288
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Ensuring that students have the opportunities to experience STEM as it is conducted by scientists, mathematicians and engineers is a complex task within the current school context. This project will expand access for middle and high school students to virtual internships, by enabling STEM content developers to design and customize virtual internships. The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. The researchers in this project will work with a core development network to develop and refine the authorware, constructing up to a hundred new virtual internships and a user group of more than 70 STEM content developers. The researchers will iteratively analyze the performance of the authorware, focusing on optimizing the utility and the feasibility of the system to support virtual internship development. They will also examine the ways in which the virtual internships are implemented in the classroom to determine the quality of the STEM internship design and influence on student learning.

The Intership-inator builds on over ten years of NSF support for the development of Syntern, a platform for deploying virtual internships that has been used in middle schools, high schools, informal science programs, and undergraduate education. In the current project, the researchers will recruit two waves of STEM content developers to expand their current core development network. A design research perspective will be used to examine the ways in which the developers interact with the components of the authorware and to document the influence of the virtual internships on student learning. The researchers will use a quantitative ethnographic approach to integrate qualitative data from surveys and interviews with the developers with their quantitative interactions with the authorware and with student use and products from pilot and field tests of the virtual internships. Data-mining and learning analytics will be used in combination with hierarchical linear modeling, regression techniques and propensity score matching to structure the quasi-experimental research design. The authorware and the multiple virtual internships will provide researchers, developers, and teachers a rich learning environment in which to explore and support students' learning of important college and career readiness content and disciplinary practices. The findings of the use of the authorware will inform STEM education about the important design characteristics for authorware that supports the work of STEM content and curriculum developers.

Teaching STEM with Robotics: Design, Development, and Testing of a Research-based Professional Development Program for Teachers

Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on robotics curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK).

Lead Organization(s): 
Award Number: 
1417769
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Offering meaningful and motivating engineering contexts, such as robotics, within science and math courses constitutes a compelling strategy to address the Next Generation Science Standards and the Common Core State Standards for Math while enhancing science and math learning for all students. Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK). To ensure that teachers are well prepared, research-based practices and features of effective Professional Development will be adopted. Experts in robotics, engineering, education, curriculum design, and assessment--with experience in K-12 education, training, and outreach--have formed an interdisciplinary team to make robotics central to and sustainable in middle school science and math classrooms.

The research questions addressed in this project are qualitative in nature as appropriate for design research questions. The methodologies include teacher needs assessment, teachers' perceptions of robotics, pre and post testing, classroom observations, and surveys. Examples of the research questions are:

What characteristics of robotics promote effective learning of middle school science and math?

What elements of Professional Development engender teachers' TPACK of robotics and link it with classroom science and math?

What are student prerequisites to effectively use robotics in science and math learning?

What are the gains in students' STEM engagement, interest, persistence, and career awareness?

The robotics curriculum will include physical science used in robot performance expectations and motion stability. Additionally the curriculum will include the engineering design process consisting of problem definition, solution development, and design improvement. Robotics provides opportunities to support science and engineering practices of the Next Generation Science Standards such as developing and using models, planning and conducting investigations, designing solutions, and analyzing and interpreting data. The project will be aimed at middle school students and will provide substantial teacher professional development to implement the new curriculum modules. The partner schools have student bodies drawn from a diverse student population in New York City.

Access, Agency, and Allies in Mathematical Systems (A3IMS)

This project involves designing, facilitating, and studying professional development (PD) to support equitable mathematics education. The PD will involve grades 4-8 mathematics teachers across three sites to support the design of a two-week institute focused on enhancing access and agency in relationship to important math practices, followed by ongoing interactions for the math teachers to engage in systematic inquiry of their practice over time to facilitate equitable mathematics teaching and learning in their classrooms.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417672
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Given the role that mathematics plays as a gateway into STEM disciplines, addressing achievement gaps for underrepresented students is essential. By focusing on both equity and access, the project, funded in the Discovery Research K-12 program, seeks to improve students' opportunities to learn by focusing on helping middle grades teachers learn about and enact equitable mathematics instruction and encourage students to have agency in their own mathematics learning. The middle grades are a particularly important focus of the project, as this is a time in students' education when achievement gaps grow. The practice-based model of professional development focuses on creating systemic reforms through collaborative communities in which mathematics teacher educators, mathematics teachers, and students work together both to support the fair distribution of opportunities to learn and to empower each in their roles in supporting mathematics learning of all students. The project has promise for supporting students, teachers, and teacher educators who work with middle grades mathematics teachers with the potential to address mathematics achievement gaps of students via a focus on equitable mathematics teaching and learning.

This project involves designing, facilitating, and studying professional development (PD) to support equitable mathematics education. The PD will involve grades 4-8 mathematics teachers across three sites to support the design of a two-week institute focused on enhancing access and agency in relationship to important mathematical practices like argumentation and justification, followed by ongoing interactions for the mathematics teachers to engage in systematic inquiry of their practice over time to facilitate equitable mathematics teaching and learning in their classrooms. Field testing of the practice-based professional development in one urban district which will include research conducted on the nature of students', teachers', and teacher educators' opportunities to learn with respect to three features of an equitable mathematical system and from the perspective of three components of the system. The project studies the coherence and alignment of these components from the perspective of classroom mathematics teachers. The research addresses essential questions related to how to provide equitable opportunity to learn for students, teachers, and teacher educators. In particular it will generate models of PD, tools for assessing equity in mathematics teaching and learning, and a theory of equitable mathematics education systems that advances our understanding of the ways in which approaches to teaching, learning, and studying mathematics support equitable opportunities to learn.

 

Pages

Subscribe to Broadening Participation