Persons with Disabilities

QuEST: Quality Elementary Science Teaching

This project is examining an innovative model of situated Professional Development (PD) and the contribution of controlled teaching experiences to teacher learning and, as a result, to student learning. The project is carrying out intensive research about an existing special PD summer institute (QuEST) that has been in existence for more than five years through a state Improving Teacher Quality Grants program.

Lead Organization(s): 
Award Number: 
1316683
Funding Period: 
Thu, 08/15/2013 to Mon, 07/31/2017
Full Description: 

The University of Missouri-Columbia is examining an innovative model of situated Professional Development (PD) and the contribution of controlled teaching experiences to teacher learning and, as a result, to student learning. The project is carrying out intensive research about an existing special PD summer institute (QuEST) that has been in existence for more than five years through a state Improving Teacher Quality Grants program. The project will do the following: (1) undertake more in-depth and targeted research to better understand the efficacy of the PD model and impacts on student learning; (2) develop and field test resources from the project that can produce broader impacts; and (3) explore potential scale-up of the model for diverse audiences. The overarching goals of the project are: (a) Implement a high-quality situated PD model for K-6 teachers in science; (b) Conduct a comprehensive and rigorous program of research to study the impacts of this model on teacher and student learning; and (c) Disseminate project outcomes to a variety of stakeholders to produce broader impacts. A comparison of two groups of teachers will be done. Both groups will experience a content (physics) and pedagogy learning experience during one week in the summer. During a second week, one group will experience "controlled teaching" of elementary students, while the other group will not. Teacher and student gains will be measured using a quantitative and qualitative, mixed-methods design.

Undergraduate Biology Education Research Program

The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

Award Number: 
1262715
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

The Undergraduate Biology Education Research (UBER) REU Site engages undergraduates in studying important issues specific to the teaching and learning of biology, with mentorship from faculty in the Division of Biological Sciences and the Mathematics and Science Education Department at the University of Georgia. The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research by strategically recruiting and mentoring underrepresented and disadvantaged students, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

A programmatic effort to introduce undergraduates to the discipline of biology education research is unprecedented nationwide. Biology education research as a discipline is quite young, and systematic involvement of undergraduates has not been part of the culture or practice in biology or education. UBER aims to promote cultural change that expands the involvement of undergraduates in biology education research and raises awareness among undergraduates that biology teaching and learning are compelling foci for study that can be pursued at the graduate level and via various career paths. UBER utilizes a combined strategy of broad and strategic recruiting to attract underrepresented minority students as well as students who do not have access to biology education research opportunities at their own institutions. Evaluation plans involve tracking UBER participants over time to understand the trajectories of students who complete undergraduate training in biology education research.

Significant co-funding of this project is provided by the Division of Biological Infrastructure in the NSF Directorate for Biological Sciences in recognition of the importance of educational research in the discipline of biology. The Division of Undergraduate Education and the Division of Research on Learning in Formal and Informal Settings also provides co-funding.

CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT) for Students with Learning Disabilities

 

Award Number: 
1708327
Funding Period: 
Tue, 07/01/2014 to Fri, 12/31/2021
Project Evaluator: 
Dr. Mary Little
Full Description: 

Dr. Hunt, a former middle school and elementary school mathematics in inclusive settings in a state-demonstration STEM school, works with students deemed to be at risk for mathematics difficulties or labeled as having disabilities. Hunt contends that research and pedagogical practice for children with disabilities should begin from a respect for children's ways of knowing and learning. Rather than focusing on whether students can or cannot develop conceptual understanding, research should attempt to uncover the complex understanding students DO have. She argues that teaching based in learning theory that positions children's learning as adaptation advances reasoning, sense-making, and co-construction of meaning.

 

The overall goal of this CAREER award project is to re-direct and re-conceptualized research and practice across mathematics education and special education to support students to build rich concepts in mathematics through student-based instructional interventions. FAACT accomplishes this goal by - toward (a) uncovering the understandings students with LD do have of fraction concepts, (b) documenting how cognitive and/or early mathematics skills might affect the processes and products of learning, and (c) understanding how growth of conceptual knowledge occurs in these students and how to nurture this growth through the learning process.

 

Through this award, Dr. Hunt is re-conceptualizing intensive intervention as children's knowing and learning in "Small Environments". This approach suggests a redirect of research and instructional practice in mathematics for an underserved population of students. The project has the potential to offer a transformative approach to mathematics instruction for students with LD, bringing together expertise on learning disabilities and mathematics education to address an area in which there is very little research. 

 

The main outcomes of the project include (1) a theory of knowing, learning, and teaching connected to students with LDs in the small environment of supplemental and intensive intervention, (2) a six stage research-based trajectory specific to the conceptual understandings of fractions evidenced by students with LD, and (3) an adaptive intervention program consisting of (a) a clinical interview educators can use to understand students’ initial fraction thinking, (b) an instructional trajectory [lesson planning framework, four task sets, and corresponding teacher moves to support student learning], and (c) an instructional decision making guide based on the instructional trajectory to aid teachers in designing student-centered instruction both in small groups and individualized formats.

 

This project was previously funded under award #1253254 and 1446250.

 

 


Project Videos

2019 STEM for All Video Showcase

Title: Fractional Reasoning: Students with Learning Disabilities

Presenter(s): Jessica Hunt, Andy Khounmeuang, Kristi Martin, Blain Patterson, & Juanita Silva


SimScientists Assessments: Physical Science Links

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

Lead Organization(s): 
Award Number: 
1221614
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The assessment strand consists of multilevel (increased thinking levels) assessment designs grounded on evidence-centered principles that target practices and key disciplinary conceptual schemes, such as matter, motion, energy, and waves identified in the National Research Council report "A Framework for K-12 Science Education: Practices, Crosscutting Knowledge, and Core Ideas". The assessment model vertically links simulations (interactive with feedback to students, coaching, and reflection); curriculum-embedded assessments for formative use; unit benchmark assessment for interim summative purposes; and a set of "signature tasks" (short-term simulations on recurring problem types). Members of the Advisory Board and an Assessment Review Panel actively participate in the development and implementation of this effort. Heller Research Associates is the external evaluator. The evaluation plan addresses both formative and summative aspects.

The project's theory of action is based on model-based learning and evidence-centered design reflective of the notion that the construct of science is multidimensional, requiring (a) understanding how the components of a science conceptual system interact to produce behaviors of the system; and (b) the use of inquiry practices to investigate the dynamic behaviors and underlying components' interactions of the system. A total of eight research and development questions guide the scope of work. The questions focus on: (a) validity (substantive and technical quality) of the individual simulation assessments; and (b) classroom implementation (feasibility, fidelity, utility). The methodology for test construction and revision follows the testing standards of major professional organizations (i.e., American Educational Research Association, American Psychological Association, and National Council of Measurement in Education) through three development phases. Phase I (Assessment Development) focuses on the alignment, quality, and prototype testing, including leverage and modification of prior work, and design of new assessment suites and signature tasks. Phase II (Pilot and Validation Studies) deals with the testing of all assessments, research instruments, and study methods. Phase III (Cross-Validation Studies) substantiates the multilevel integration assessment model, cross-validates the assessments piloted in Phase II, and establishes a reliable argument that the assessments measure the intended content and inquiry practices suitable for use in district and state-level assessment systems.

Expected outcomes are: (1) a research-informed and field-tested physical science simulations-based assessment model with high potential for extended use in middle school grades; and (2) a policy brief that provides recommendations for integrating assessments into districts and state large-scale, multi-level, balanced science assessments.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

Math Pathways and Pitfalls: Capturing What Works for Anytime Anyplace Professional Development

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

Lead Organization(s): 
Award Number: 
0918834
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Full Description: 

Researchers and developers at WestEd are developing, field-testing, and evaluating ten online professional development modules anchored in research-based teaching principles and achievement-boosting mathematics materials. The modules provide interactive learning opportunities featuring real classroom video demonstrations, simulations, and scaffolded implementation. The professional development module development builds on the Math Pathways and Pitfalls instructional modules for elementary and middle school students developed with NSF support. The professional development provided through the use of these modules is web-based (rather than face-to-face), is provided in chunks during the school year and immediately applied in the classroom (rather than summer professional development and school year application), and explicitly models ways to apply key teaching principles to regular mathematics lessons (rather than expecting teachers to extract and apply principles spontaneously).

The project studies the impact of the modules on teaching practice with an experimental design that involves 20 treatment teachers and 20 control teachers. Data are gathered from teacher questionnaires, classroom observations, and post-observation interviews.

Pages

Subscribe to Persons with Disabilities