Low Socio-economic Status Students

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Marco-Bujosa)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101144
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Johnson)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101287
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Richardson)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101324
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Macalalag)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101395
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Linn)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Partner Organization(s): 
Award Number: 
2101669
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Riordan)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Lead Organization(s): 
Award Number: 
2101670
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

DataX: Exploring Justice-Oriented Data Science with Secondary School Students

This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

Award Number: 
2101413
Funding Period: 
Thu, 07/01/2021 to Fri, 06/30/2023
Full Description: 

Understanding data is critical for informed citizens. Data science is a growing and emerging field that can incorporate statistics, mathematics, and computer science to develop disciplinary knowledge and address societal challenges. This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This project includes science and social studies teachers in the design of the resources and in testing them in secondary school classrooms. Research and development in data science education is needed to understand how students can learn more about the use of data in meaningful and authentic ways. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

During a two-year project period, we aim to iteratively advance three design components of the DataX program: (a) a justice-oriented data science curriculum integrated in secondary science and social studies; (b) a web-based learning platform that extends the Common Online Data Analysis Platform (CODAP) to support collaboration and sophisticated data practices; and (c) pedagogical practices that involve learners to work collectively as community. The guiding research question is: What scaffolds and resources are necessary to support the co-development of data, disciplinary, and critical literacies in secondary classrooms? To address this, the project will use participatory design research with science and social studies teachers to develop and test the curriculum, the learning platform, and the pedagogical practices. The data collected will include qualitative sources gathered from participatory design workshops and classrooms, as well as quantitative data from questionnaires and system logs. Using the data, we examine students' data science skills, data dispositions, and social participation in collaborative data investigations.

A Researcher-Practitioner Partnership to Assess the Impact of COVID-19 Recession on NGSS Implementation

This project will investigate how NGSS has been implemented in California schools during the ongoing COVID-19 pandemic. Through a state-wide survey, analysis of administrative data, interviews and case studies, this project will assess the impact of COVID-19 on NGSS implementation on a large scale, and more importantly, the extent to which high minority, high-poverty districts are disproportionately affected. It will also identify policy options available to state and school districts.

Award Number: 
2128789
Funding Period: 
Tue, 06/01/2021 to Tue, 05/31/2022
Full Description: 

Today 44 states serving 71 percent of U.S. students have education standards influenced by the Next Generation Science Standards (NGSS). Local implementation is the key to the success of NGSS, yet little is known about the extent to which NGSS have been implemented in K-12 schools during COVID-19. Policymakers, educational leaders, and researchers urgently need data to know whether and how NGSS implementation is taking hold in their schools in light of changes due to COVID-19 so that they may design better supports for implementation in anticipation for school reopening for in-person learning in September 2021. This project will investigate how NGSS has been implemented in California schools during the ongoing COVID-19 pandemic. Through a state-wide survey, analysis of administrative data, interviews and case studies, this project will assess the impact of COVID-19 on NGSS implementation on a large scale, and more importantly, the extent to which high minority, high-poverty districts are disproportionately affected. It will also identify policy options available to state and school districts. By collecting critical and timely data, this project will contribute new knowledge to understanding of the impact of COVID-19 on NGSS implementation. This knowledge is a necessary step towards policy and practice solutions that support schools and teachers in continuing implementation of NGSS and expanding educational opportunities to underrepresented minorities, English learners, and students with disabilities in post-COVID-19.

The goals of the project are to (1) assess the impacts of COVID-19 on NGSS implementation in California; (2) examine whether and how high-minority, high-poverty districts are impacted more acutely than other districts; and (3) identify policies and programs state and local districts could prioritize to mitigate the impacts. A mixed methods approach will be used to answer research questions related to the above goals. Specifically, a survey of all school districts in California will be conducted. Text mining of school district administrative data will also be performed. Qualitative methods will include interviews and case studies. Extensive outreach efforts, including one-on-one briefings with the members of the legislative and executive branches, will also take place throughout the year. A researcher-practitioner partnership will be formed through engaging the California State Department of Education in allocating resources for NGSS implementation and local school districts in developing guidelines to support teachers in NGSS-aligned instruction. Project findings will be widely disseminated through online resources and digital libraries to school districts, science teachers, and curriculum developers. Project findings will inform state policymaking and increase the partnerships between research institutions and state government.

Building a Flexible and Comprehensive Approach to Supporting Student Development of Whole Number Understanding

The purpose of this project is to develop and conduct initial studies of a multi-grade program targeting critical early math concepts. The project is designed to address equitable access to mathematics and STEM learning for all students, including those with or at-risk for learning disabilities and underrepresented groups.

Lead Organization(s): 
Award Number: 
2101308
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

A critical goal for the nation is ensuring all students have a successful start in learning mathematics. While strides have been made in supporting at-risk students in mathematics, significant challenges still exist. These challenges include enabling access to and learning of advanced mathematics content, ensuring that learning gains don’t fade over time, and providing greater support to students with the most severe learning needs. One way to address these challenges is through the use of mathematics programs designed to span multiple grades. The purpose of this project is to develop and conduct initial studies of a multi-grade program targeting critical early math concepts. The project is designed to address equitable access to mathematics and STEM learning for all students, including those with or at-risk for learning disabilities and underrepresented groups.

The three aims of the project are to: (1) develop a set of 10 Bridging Lessons designed to link existing kindergarten and first grade intervention programs (2) develop a second grade intervention program that in combination with the kindergarten and first grade programs will promote a coherent sequence of whole number concepts, skills, and operations across kindergarten to second grade; and (3) conduct a pilot study of the second grade program examining initial promise to improve student mathematics achievement. To accomplish these goals multiple methods will be used including iterative design and development process and the use of a randomized control trial to study potential impact on student math learning. Study participants include approximately 220 kindergarten through second grade students from 8 schools across three districts. Study measures include teacher surveys, direct observations, and student math outcome measures. The project addresses the need for research developed intervention programs focused on advanced whole number content. The work is intended to support schools in designing and deploying math interventions to provide support to students both within and across the early elementary grades as they encounter and engage with critical mathematics content.

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Felton)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101456
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

Pages

Subscribe to Low Socio-economic Status Students