Significant resources have been invested in workforce development to ensure the world is prepared for the growth of the quantum industry, yet relatively little work has focused on K-12 education. This project will address the challenge of effectively engaging K-12 students in this new area and teaching them complex quantum science concepts by developing a toolkit of K-12 quantum frameworks that will serve as a guide for building student understanding of quantum concepts over time. This project will identify the alignment of content across grade levels required for teaching quantum within the disciplines of chemistry, physics, mathematics, and computer science.
Projects
The growing importance of data, data science and artificial intelligence (AI) in education, work, and personal and civic life has increased the need for all U.S. students to develop data literacy, statistical reasoning, and computational thinking skills. However, most middle school students—especially those with learning disabilities (SLD)—receive limited or no instruction in these areas. Data science and AI instruction is often limited to high school settings, narrowly framed within mathematics or science, and rarely designed with the flexibility to support learner variability. The purpose of this project is to develop and refine Data Adventures, a series of open-access, modular, and instructional experiences units designed to introduce middle school students to data literacy, computational thinking, and digital storytelling, while also promoting critical understanding of AI and its role in education, work technology, and everyday life.
Coding is a key part of computer science, and promoting opportunities that engage learners in coding is vital to the U.S. workforce development. This project builds upon prior research that created a free coding app, OctoStudio, which is widely available for use in elementary and secondary schools. The goals of the project are twofold: First, the team will develop and design features that broaden the technology so that it is more accessible for more users. Second, the team will explore the usability of these new features across potential users. The new features will have potential to allow blind and low vision users to meaningfully engage in coding, which ultimately benefits society by broadening the STEM workforce and bringing coding to a greater population of students.
This project synthesizes research on teacher learning to distill ideas and develop a new, deeper understanding of how preK-12 teacher professional learning in mathematics and science influences teacher beliefs, knowledge, and practice. This study will provide information that enables states, districts, and schools to elevate the quality of teacher professional learning in STEM to lead to more effective instruction that fosters more and better STEM student engagement and learning and motivates more students to choose STEM careers.
While simulations are powerful tools for scientific inquiry, most students need scaffolding to engage productively in simulation-based inquiry. This project will develop and study an automated feedback system designed to support middle school students' simulation-based inquiry into wildfires, floods, and hurricanes. The system, called Hazbot, will leverage advanced artificial intelligence (AI) technologies—including machine learning and large language models (LLMs)—to provide timely, personalized feedback as students investigate the three different natural hazards.
As artificial intelligence (AI) becomes increasingly embedded in the technologies used by both students and teachers, it is essential for them to understand how to be safe while using AI. Furthermore, AI and cybersecurity technology together are better at detecting malicious activities than conventional security systems. The need to blend the two disciplines into a single, integrated curriculum for K-8 education is highlighted by the interconnectedness of AI and cybersecurity as complementary systems. This project will "plant the seeds" of these literacies by spiraling content on topics from computer programming, internet fundamentals, and introduction to data and AI along with cybersecurity topics in small doses throughout students' K-8 education. This project will lay the foundation for the students to eventually develop a comprehensive understanding of how different technologies work and interact.
This project addresses a crucial need in K-12 science teacher education to respond to local school district needs for high-quality science teaching and the role of teacher education programs to develop programs that provide prospective teachers the best opportunity for success as science teachers. Specifically, the project aims to advance science teacher education by applying a pragmatic, iterative approach to developing teacher education program resources and tools that will support the implementation of evidence-based STEM teaching and learning practices in K-12 science classrooms. The project will identify evidence-based STEM teaching and learning practices through a systematic review of K-12 STEM education research and resources. Rather than generate new evidence, the project leverages the evidence that already exists to support educators in adapting and sustaining existing high-quality practices that have already demonstrated positive impacts on students' STEM learning.
Disengagement from mathematics during middle and high school is a widespread concern that contributes to lower academic achievement and diminished long-term participation in STEM fields. Research shows that students' beliefs about their ability to grow and improve—often referred to as growth mindsets—can significantly enhance motivation, persistence, and performance. However, classroom environments and teacher practices play a critical role in shaping these beliefs. This project evaluates a professional development program, Fellowship Using the Science of Engagement (FUSE), designed to help 6th through 9th grade math teachers adopt instructional practices that foster growth mindset-supportive learning environments. The program provides teachers with research-based insights into adolescent development, structured opportunities to revise their instructional language and feedback practices, and personalized guidance through AI-supported coaching. The study examines whether the FUSE program improves teacher mindsets, communication practices, and well-being, and whether these changes lead to increased student motivation, improved perceptions of classroom climate, and higher performance on state mathematics assessments.
As artificial intelligence (AI) becomes increasingly embedded in the technologies used by both students and teachers, it is essential for them to understand how to be safe while using AI. Furthermore, AI and cybersecurity technology together are better at detecting malicious activities than conventional security systems. The need to blend the two disciplines into a single, integrated curriculum for K-8 education is highlighted by the interconnectedness of AI and cybersecurity as complementary systems. This project will "plant the seeds" of these literacies by spiraling content on topics from computer programming, internet fundamentals, and introduction to data and AI along with cybersecurity topics in small doses throughout students' K-8 education. This project will lay the foundation for the students to eventually develop a comprehensive understanding of how different technologies work and interact.
As STEM education researchers work to improve STEM teaching and learning in schools and districts across the nation, rural communities are often overlooked. There is a definite critical need for STEM education research focused on rural communities. Rural schools typically have less funding for STEM programs, have trouble recruiting and retaining quality STEM teachers, and have less access to STEM learning opportunities. Yet, rural communities possess an abundance of ingenuity, resourcefulness, and collective problem-solving skills. This project works to address this need by bringing together researchers, rural educators, and workforce leaders in rural communities to support the mutual exchange of knowledge and learning around pressing problems in rural K-12 STEM education, understanding rural ingenuity within teaching STEM, and STEM education's connection with the local workforce.
The goal of this project is to build teacher capacity for integrating computational thinking (CT) into grades 6–8 science classrooms. The project will support teacher professional vision and adaptive expertise for CT-infused instruction through instructional coaching, professional development workshops, and an online professional learning community. These efforts aim to empower teachers to design, enact, and adapt CT-integrated lessons that foster students’ positive attitudes toward science and enhance their knowledge of science and CT.
The goal of this project is to build teacher capacity for integrating computational thinking (CT) into grades 6–8 science classrooms. The project will support teacher professional vision and adaptive expertise for CT-infused instruction through instructional coaching, professional development workshops, and an online professional learning community. These efforts aim to empower teachers to design, enact, and adapt CT-integrated lessons that foster students’ positive attitudes toward science and enhance their knowledge of science and CT.
This project explores how immersive field science experiences and carefully designed digital resources can help secondary teachers make science more engaging and relatable for students. The research team will study how teachers incorporate what they learn from real-world science experiences into their classroom teaching and whether online materials can replicate some of the same benefits. By improving both immersive and digital professional learning experiences, the project aims to increase access to and decrease the cost of high-quality instructional supports, especially for teachers who cannot attend traditional field-based learning.
