Projects

09/01/2018

The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

08/15/2017

The project is a longitudinal assessment of the prerequisite (e.g. fractions), cognitive (e.g. working memory), and non-cognitive (e.g. math anxiety) factors that dynamically influence 7-9th grade students' algebraic learning and cognition, with a focus on students with learning disabilities in mathematics. The study will provide the most comprehensive assessment of the development of algebra competence ever conducted and is organized by an integrative model of cognitive and non-cognitive influences on students' engagement in math classrooms and on the learning of procedural and spatial-related aspects of algebra.

09/15/2016

This project aims to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM) that will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways.

08/01/2017

This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.

07/01/2021

The purpose of this project is to develop and conduct initial studies of a multi-grade program targeting critical early math concepts. The project is designed to address equitable access to mathematics and STEM learning for all students, including those with or at-risk for learning disabilities and underrepresented groups.

08/01/2019

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound for students with visual impairments.

06/01/2020

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

07/01/2014

This project is documenting how students with learning disabilities (LD) access and advance their conceptual understanding of fractions.  Rather than focusing on the knowledge students do not have, this work is focused on uncovering students' informal knowledge that can bridge to fractions and how instruction can be used to promote conceptual change. 

 

07/01/2023

One of the most persistent challenges in education is the gap between research and classroom practice, meaning that research-informed recommendations and practices that could support students’ mathematics learning do not always reach the classroom. Improving how mathematics-focused education research is communicated to a teacher audience—using strategies that are useful and valuable from the teacher perspective—is one key avenue for mitigating consequences of the research-practice gap. This project will develop, assess, and refine innovative key abstracts (i.e., concise, infographic-type resources) for communicating mathematics-focused practitioner articles with a teacher audience. Teacher perspectives will be embedded throughout the project to inform key abstract design. The project also involves a collaboration with the university disability center to provide funded research opportunities in STEM education to university students with disabilities.

09/01/2016

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

02/01/2020

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

09/01/2015

This project will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. 

08/01/2020

This project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

09/01/2013

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

10/01/2023

The purpose of this project is to develop a home mathematics environment (HME) intervention for preschool-aged children with developmental delays (DD). The project includes caregivers of children with DD as collaborators in the iterative design process to develop feasible and sustainable HME intervention activities.

09/01/2017

This project builds upon the prior work by creating problem-solving measures for grades 3-5. The elementary assessments will be connected to the middle-grades assessments and will be available for use by school districts, researchers, and other education professionals seeking to effectively measure children's problem solving. The aims of the project are to (a) create three new mathematical problem-solving assessments and gather validity evidence for their use, (b) link the problem-solving measures (PSMs) with prior problem-solving measures (i.e., PSM6, PSM7, and PSM8), and (c) develop a meaningful reporting system for the PSMs.

08/01/2021

The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.

08/01/2021

The Common Core State Standards for Mathematics (CCSSM) problem-solving measures assess students’ problem-solving performance within the context of CCSSM math content and practices. This project expands the scope of the problem-solving measures use and score interpretation. The project work advances mathematical problem-solving assessments into computer adaptive testing. Computer adaptive testing allows for more precise and efficient targeting of student ability compared to static tests.

08/01/2021

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.

10/01/2023

Understanding of algebra concepts is necessary for students to gain access to STEM pathways. However, recent efforts in education have failed to improve algebra outcomes for many students, especially those with learning disabilities and persistent difficulties in mathematics. The primary goal of this project is to develop a supplemental intervention that intentionally develops students' concept of variable as they learn to (a) interpret and evaluate expressions, (b) represent real-life mathematical word problems using algebraic notation, and (c) solve linear equations. A focus on clarifying common misconceptions about variables will be interwoven throughout the program.

08/01/2018

Project researchers are training pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The trainings emphasize the use of gestures and strategic questioning to support students with learning disabilities and to build students’ understanding in Algebra 1. These trainings will prepare tutors to address the challenges that students with learning disabilities often face—especially challenges related to working memory and processing—and to build on students’ strengths as they engage with Algebra 1.