Projects

09/01/2012

This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.

09/01/2020

Through this project, researchers will develop internet-based assessments designed to capture learning outcomes that (a) measure the higher order cognitive skills that are essential to current reform efforts, and (b) that report results in ways that are readily accessible and interpretable.

09/01/2009

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

07/01/2019

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

07/15/2014

This project will use classroom-based research to teach children about important algebraic concepts and to carefully explore how children come to understand these concepts. The primary goal is to identify levels of sophistication in children's thinking as it develops through instruction. Understanding how children's thinking develops will provide a critical foundation for designing curricula, developing content standards, and informing educational policies.

07/01/2011

This project designs, develops and tests a digital gaming environment for high school students that fosters and measures science learning within alternate reality games about saving Earth's ecosystems. Players work together to solve scientific challenges using a broad range of tools including a centralized web-based gaming site and social networking tools, along with handheld smart-phones, and an avatar-based massively multiplayer online environment. The game requires players to contribute to a scientific knowledge building community.

10/01/2012

The core research questions of the project are: (1) What is the nature of high-leverage student thinking that teachers have available to them in their classrooms? (2) How do teachers use student thinking during instruction and what goals, orientations and resources underlie that use? (3) What is the learning trajectory for the teaching practice of productively using student thinking? and (4) What supports can be provided to move teachers along that learning trajectory?

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

09/01/2016

This project builds on a prior study that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. The project will extend the use of the argumentation intervention into all eighth grade content areas, with a specific focus on students' learning of reasoning and proof, and contribute to understanding how students' learning about mathematical practices that can help them learn mathematics better.

09/01/2019

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

06/01/2021

This project will synthesize research on computer-supported collaborative learning (CSCL). The science of CSCL achieved advances in the past decade, including producing a research handbook—however, practitioners do not have easy access to research journals, nor time to sift through the latest findings to guide their practice. Further, conventional forms of research synthesis, such as research handbooks or long synthesis papers, serve narrow audiences and are rarely read by practitioners. The research team will investigate and develop a novel synthesis approach to provide educators and researchers with a novel form of synthesis organized around an interactive map of topics and subtopics.

09/15/2009

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

07/15/2015

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

09/15/2017

The primary aim of this study is to develop mathematics screening assessment tools for Grades K-2 over the course of four years that measure students' abilities in numeric relational reasoning and spatial reasoning. The team of researchers will develop Measures of Mathematical Reasoning Skills system, which will contain Tests of Numeric Relational Reasoning (T-NRR) and Tests of Spatial Reasoning (T-SR). The measures will be intended for use by teachers and school systems to screen students to determine who is at-risk for difficulty in early mathematics, including students with disabilities.

09/01/2021

Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills. This impact study project will investigate the effectiveness of STEM-Innovation and Design (STEM-ID) curricula and determine whether STEM-ID courses are equally effective across different demographic groups and school environments under normal implementation conditions and whether the courses have the potential to positively impact a vast number of students around the country, particularly students who have struggled to stay engaged with their STEM education.

09/01/2018

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

08/01/2012

In this project, investigators will convene a group of 15 African American science educators, scientists, and doctoral student scholars and assign them to small work groups to design and conduct multi-site micro-research studies on learning activities that promote science learning and teaching. Work groups will investigate different learning and teaching approaches used in K-12 rural and urban school settings to identify effects on student science learning using quantitative, qualitative, or mixed design studies.

09/01/2013

This project is developing and validating an assessment instrument that addresses the life sciences for students and teachers in grades 9 through 12 based on the Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART).

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

07/15/2011

This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs