Projects

05/15/2017

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.

08/01/2022

This project will design and research a professional development (PD) model in which elementary teachers experience integrated, place-based, culturally sustaining STEM curriculum focused on local watersheds and grounded in local Native American cultural values and knowledge. The teachers will then design and implement their own culturally relevant STEM unit, guided by the PD, which is situated within their local watershed and Indigenous community.

10/01/2023

This project examines how Latine, bilingual teachers' dispositions to teach science and engineering to bilingual learners change as they enter the teaching profession. Specifically, it explores bilingual teachers' transition from a period of strong social support to one of scarce social support, i.e., from being Bilingual Teacher Candidates to Novice Bilingual Teachers (NBTs) as they plan and teach bilingual science and engineering lessons.

10/01/2020

This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS).

09/01/2018

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

08/01/2019

This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.

05/01/2020

This project will support a national research study on how teachers are helping students respond to COVID-19. The findings will inform the development of curriculum materials for teaching about COVID-19 and help science teachers to adapt their instruction as they help to fulfill a critical public health function. This study will enable a better understanding of the role that science teachers can play in a national response, both now and in future crises.

05/15/2017

This project will develop a short instructional sequence and new student learning assessments that are implemented in earth science classes. The findings will help the field to understand whether the process of abstracting from multiple phenomena during model construction supports students' understanding of scientific models in relation to earth science ideas and the cross-cutting concept of scale.

09/01/2019

This project proposes to study the teaching and learning of algebra in grades 7-9, with a specific focus on the ways in which classroom language explicitly describes properties of and relationships among algebraic objects. The project seeks to investigate the bi-directional relationship between reasoning-rich algebraic discourse and the mathematical meanings students hold for core algebraic concepts such as equations, the equation-solving process, and functions.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

06/01/2020

The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.

05/15/2020

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

06/01/2022

In this project, we examine middle-school students’ understandings of coordinate systems and frames of reference prior to examining their graph construction and interpretation. This focus allows us to design instructional materials that can support students’ graphing understandings in ways that avoid or mitigate how persistent challenges in students’ graphing understandings identified in the research literature.

06/15/2020

The COVID-19 pandemic has significantly disrupted the ability of teacher education programs to place their teacher candidates in typical K-12 teaching settings as a part of learning to teach. This project examines how simulated classroom field experiences for preservice teachers can be implemented in online and emergency remote teacher education courses.

07/15/2022

Understanding probability is essential for daily life. Probabilistic reasoning is critical in decision making not only for people but also for artificial intelligence (AI). AI sets a modern context to connect probability concepts to real-life situations. It also provides unique opportunities for reciprocal learning that can advance student understanding of both AI systems and probabilistic reasoning. This project aims to improve the current practice of high school probability education and to design AI problem-solving to connect probability and AI concepts. Set in a game-based environment, students learn and practice applying probability theory while exploring the world of probability-based AI algorithms to solve problems that are meaningful and relevant to them.

01/01/2019

This Rapid Response Research (RAPID) project is an exploratory mixed methods study investigating the impact of vulnerability and resilience in the recovery of North Carolina schools affected by both Hurricanes Florence (2018) and Matthew (2016). Specifically, the study assesses whether schools that were impacted by both storms used organizational learning strategies to recover faster than schools that were impacted by either Hurricane Florence or Matthew alone.

07/01/2017

This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.

08/15/2021

This project will investigate the challenges, needs, and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF), in particular the Division of Research on Learning in Informal and Formal Settings (DRL). The project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs.

08/15/2017

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

07/15/2020

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

07/01/2022

This project seeks to understand how children learn about place value by studying different representations of multi-digit numbers (written number symbols, heard number names) and how prior knowledge of number influences children’s’ learning. Knowing more about multi-digit number learning will help to create teaching and curriculum resources that better support children’s learning.

09/01/2023

This exploratory study aims to design, implement, and test climate science and history professional learning materials and experiences for high school teachers. By leveraging existing science and history/social science materials, the program will develop curricular planning tools and lessons to help teachers integrate climate literacy into their instructional units. The goal is to provide students with the knowledge to understand and respond to the social and environmental issues associated with the climate crisis.