The project team will conduct an efficacy study of a new comprehensive science curriculum for middle grades 6-8 called Amplify Science Middle School (ASMS). This school science curriculum integrates disciplinary core ideas, science and engineering practices, and crosscutting concepts. The overarching aim of the study will be to understand the impact of the curriculum on student achievement, classroom implementation, and teacher practice in relation to the recommendations of "A Framework for K-12 Science Education" and the Next Generation of Science Standards.
Projects
This grant is also known as The Responsive Math Teaching Project: Developing Instructional Leadership in a Network of Elementary Schools.
The goal of this project is to build instructional leadership capacity in teachers and school-based leaders in a network of underperforming elementary schools with limited resources. Through design-based improvement research, the project is designed to enhance the knowledge, skills, and competencies of elementary teacher leaders and principals to develop a shared vision and provide ongoing support of high-quality math instruction.
The ACCLIME project investigates teachers' uses and adaptations of CMP, an NSF-funded middle school curriculum. The study seeks to better articulate: (1) the ways that teachers adapt CMP over time and how they develop professionally as a result of using the curriculum materials; (2) the connection between district policy, resource development, and teachers' curriculum processes; and (3) the dynamic nature of districts' long-term curriculum implementations.
This project involves a longitudinal, ethnographic study of children's mathematical performances from preschool to first grade in both formal classroom settings and informal settings at school and home. The study seeks to identify opportunities for mathematical learning, to map varied performances of mathematical competence, to chart changes in mathematical performance over time, and to design and assess the impact of case studies for teacher education.
This project characterizes and analyses the developing mathematical identities of Latinx students transitioning from elementary to middle grades mathematics. The central hypothesis of this project is that elementary Latino students' stories can identify how race and language are influential to their mathematical identities and how school and classroom practices may perpetuate inequities.
This project investigated the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use every day. The enactment with OpenSim (an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics) also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.
The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.
The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions.
This exploratory project will design, pilot, and evaluate a 10-week, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements.
The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.
Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations.
This project will engage science teachers in a sustained professional development (PD) program embedded in an afterschool science program designed for a linguistically diverse group of English learners (ELs).
Familial presence in school supports children’s learning. However, few models exist that illustrate forms of familial presence in STEM learning that center familial cultural knowledge and practice. The project will produce a model for familial engagement in STEM along with instructional tools and illustrative case-studies that can be used by teachers and school districts nationally in support of increasing students’ STEM learning. This three-year study investigates new instructional practices that support rightful familial presence in STEM as a mechanism to address the continued racial and class gaps in STEM achievement for historically marginalized students.
In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.
This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.
This project is developing and conducting research on the Cohort Model for addressing the mathematics education of students that perform in the bottom quartile on state and district tests. The predicted outcome is that most students will remain in the cohort for all four years and that almost all of those who do will perform well enough on college entrance exams to be admitted and will test out of remedial mathematics courses.