Projects

09/01/2012

In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.

09/01/2012

In this project, investigators are developing and testing a learning progression for the study of chemistry. Likely pathways are investigated for how grade 8-13 student's implicit assumptions develop on five major threads of chemical design. A focus on chemical design facilitates the coherent integration of scientific and engineering practices, cross-cutting concepts, and disciplinary core ideas. This approach should make chemistry more engaging to a greater variety of students.

09/01/2007

Using an experimental design, this project examines the effects of online professional development courses on high school biology teachers' content and pedagogical knowledge, and on their students' knowledge. The project is testing the impact of using digital resouces and is using hierarchal linear modeling techniques to analyze data. It will contribute to the knowledge base of what impacts student achievement by testing the efficacy of online professional development for science teachers.

09/01/2011

This project will determine the viability of an engineering concept-based approach to teacher professional development for secondary school science teachers in life science and in physical science. The project refines the conceptual base for engineering at the secondary level learning to increase the understanding of engineering concepts by the science teachers. The hypothesis is that when teachers and students engage with engineering design activities their understanding of science concepts and inquiry are also enhanced.

07/01/2019

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

09/01/2008

This project supports up to eight fellows per year to participate in the Albert Einstein Distinguished Educator Fellows Program. This program provides opportunities for teachers to work on educational issues and/or programs in a federal agency or congressional office. It promotes professional growth; fosters the exchange of ideas that are relevant to STEM education at the national and state levels through conferences, workshops, and presentations; provides opportunities for teachers' input; and awards outstanding teachers.

08/01/2021

The Framework for K-12 Science Education has set forth an ambitious vision for science learning by integrating disciplinary science ideas, scientific and engineering practices, and crosscutting concepts, so that students could develop competence to meet the STEM challenges of the 21st century. Achieving this vision requires transformation of assessment practices from relying on multiple-choice items to performance-based knowledge-in-use tasks. However, these performance-based constructed-response items often prohibit timely feedback, which, in turn, has hindered science teachers from using these assessments. Artificial Intelligence (AI) has demonstrated great potential to meet this assessment challenge. To tackle this challenge, experts in assessment, AI, and science education will gather for a two-day conference at University of Georgia to generate knowledge of integrating AI in science assessment.

08/15/2010

This research and development project develops and tests in the classroom three fifth-grade and two second-grade science units that combine both socio-cultural and socio-cognitive perspectives in order to more fully engage both students and teachers in authentic inquiry and tests the units in second- and fifth-grade classrooms.

09/01/2023

This project will develop and iteratively refine a practical framework and a suite of teacher education materials that support early career teachers—from preservice teacher education through their third year of classroom teaching—in teaching that recognizes and nurtures the scientific knowledge and practices of children and supports meaningful participation of historically marginalized children in science.

09/01/2013

This project combines Unity (a cross-platform game engine and integrated development environment) with cutting-edge haptic technology to provide upper elementary students with a new way of accessing core science content. The core research question that undergirds this exploratory project is: How does the addition of haptic feedback influence users' understandings of core, often invisible, science content?

08/01/2019

This project will examine how partnerships among state science leaders, education researchers and education practitioners cultivate vertical coherence and equity in state science education.

02/01/2024

In the 21st century, the educational landscape is undergoing a seismic shift, with Artificial Intelligence (AI) emerging as a pivotal force reshaping the contours of teaching and learning, especially in the realm of science education. As educators, policymakers, and researchers grapple with the challenges and opportunities presented by this technological juggernaut, this project underscores the imperative to weave AI's transformative potential seamlessly with the foundational principles of Diversity, Equity, and Inclusion (DEI). The vision driving this initiative is twofold: harnessing the unparalleled capabilities of AI to revolutionize educational experiences while ensuring that these innovations are accessible, relevant, and beneficial to every student, irrespective of their background or circumstances.

04/01/2005

This project extends the Physics Teaching Web Advisory (Pathway) to the full curriculum. Pathway's Synthetic Interviews and related video materials provide pre-service and out-of-field in-service teachers with much needed professional development and well-prepared teachers with new perspectives on teaching physics. Pathway combines state-of-the-art digital video library technology, developed pedagogical advances and materials contributed by master teachers. This dynamic digital library provides continuous assistance and expertise for teachers.

09/01/2024

Despite the importance of addressing climate change, existing K-12 curricula struggle to make the urgency of the situation personally relevant to students. This project seeks to address this challenge in climate change education by making the abstract, global, and seemingly intractable problem of climate change concrete, local, and actionable for young people. The goal of this project is to develop and test actLocal, an online platform for K–12 teachers, students, and the public to easily create localized climate change adaptation simulations for any location in the contiguous United States. These simulations will enable high school students and others to implement and evaluate strategies to address the impacts of climate change in their own communities.

09/15/2007

This project augmenting the traditional professional development model with an online professional development platform—the Active Physics Teacher Community—that provides just-in-time support for teachers as they are enacting targeted units of the Active Physics curriculum. Teachers are helped in preparing lessons by providing them with formal instruction related to the lessons they are teaching in the classroom. In addition, teachers can participate in a moderated forum where they can share experiences.

07/15/2010

This project will synthesize existing literature on modeling-based instruction (MBI) in K-12 science education over the last three decades. It will rigorously code and examine the literature to conceptualize the landscape of the theoretical frameworks of MBI approaches, identify the effective design features of modeling-based learning environments with an emphasis on technology-enhanced ones, and identify the most effective MBI practices that are associated with successful student learning through a meta-analysis.

08/15/2008

The Accessing Science Ideas (ASI) project is developing and researching content enhancements that support science learning of middle school students with executive function and related learning disabilities.  The goal of ASI research is to measure the extent to which curricular units with content enhancements lead to increased student understanding of science concepts, improved reasoning, and greater confidence.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

09/01/2018

The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge.

10/01/2006

This project is developing technology-rich science curriculum exemplars for grades 3-6 based on Universal Design for Learning (UDL) principles. The project is testing the effectiveness of the approach and providing an exemplar that can inspire additional content and further development. A set of professional development materials to support teacher implementation of UDL science curriculum in the classroom is planned. Probes are used for lab investigations and computational models are used for experimentation in virtual environments.

07/15/2023

Today’s schools are experiencing increasing cultural and linguistic diversity and facing the challenge of creating meaningful connections between school science and student lived experiences outside of school. Middle school is a critical time to provide fundamental knowledge and encourage interest in STEM careers. In order to best impact learners during this critical period, science teachers need improved models to support the development and delivery of relevant curriculum materials to better serve all students in their classrooms. Highly supported design teams consisting of researchers, teachers, and both school and district science specialists will co-adapt existing district-generated science units to integrate socially and culturally relevant science practices and draw on students' diverse cultural and language practices as strengths.

10/01/2022

This comprehensive systematic review and meta-analysis synthesizes evidence surrounding math and science remote education programs from the past 15 years. The goal is to understand the effectiveness of math and science remote education programs; how their effectiveness varies by program characteristics (e.g., fully online vs. hybrid, synchronous vs. asynchronous, and student-instructor ratio); and whether their effects vary with student sample characteristics.

05/01/2006

This project is designed to study the Partnership for Reform in Secondary Science and Mathematics professional development model. The research on this model will contribute to the knowledge base on professional development through an empirical investigation of the model of supported teacher collaborative inquiry. The research addresses how the interactions amongst Professional Learning Community teachers contribute to new understandings about teaching, learning, and disciplinary content, and whether this translates into changes in classroom practice.

09/01/2014

This project seeks to find ways to make the measurement sciences more useful to the production of intellective competence in diverse students of the STEM disciplines. A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in STEM Education will be established to address a set of issues posed as critical to the future of assessment for education and will undertake a series of activities culminating in the production of a report.